РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ФИЗИКИ им. Л.В. КИРЕНСКОГО

Препринт № 798 Ф

КУБИЧЕСКИЕ ГАЛОИДНЫЕ ЭЛЬПАСОЛИТОПОДОБНЫЕ КРИСТАЛЛЫ

Б.В. Безносиков

К.С. Александров

УДК 548.3

Проведен кристаллохимический анализ галоидных эльпасолитоподобных структур составов A₂B⁺B³⁺X₆, где A, B катионы, X анион. Определена область существования кубических фаз. Прогнозируются соединения, в которых структурные фазовые переходы маловероятны. Приведены структурные данные известных соединений.

Часть материала препринта опубликована в журнальном варианте: Безносиков Б.В. Прогноз галоидных эльпасолитоподобных кристаллов // Перспективные материалы. 2001. № 3. С. 34–39.

	Оглавление			Стр.
1.	Введение			2
2.	Определение кубических стр	области су уктур	уществования	7
3.	Структуры с фа	азовыми пер	еходами	15
4.	Заключение			17
5.	Приложение. А ⁺ ₂ B ⁺ B ³⁺ X ⁻ 6	Структуры	соединений	10
e				20
Ο.	литература			39
~				

© Институт физики им. Л.В. Киренского СО РАН

Красноярск 2000

Работы по данной тематике выполняются в лаборатории кристаллофизики Института физики им. Л.В. Киренского СО РАН при финансовой поддержке Российского фонда фундаментальных исследований (гранты: 00–15–96790, 99–02– 17375), гранта INTAS 97–10177

1. Введение

Соединения составов А₂В'В''Х₆, где А, В – катионы, Х – анион, встречаются среди галогенидов, оксидов, оксигалогенидов, цианидов, гидридов и насчитывают несколько десятков структурных типов. Наиболее вероятны структуры с упорядоченными катионами В в составах A₂B⁺B³⁺X₆⁻. Поведение структуры в эльпасолитоподобных галоидных кристаллах, при изменении термодинамических условий, подобно изменению ее в галоидных перовскитах. При понижении температуры во многих кубических кристаллах происходят ротационные фазовые переходы с понижением симметрии и поворотами анионных октаэдров. Ромбоэдрические политипы под высоким давлением могут переходить в кубические структуры, как в Cs₂AqAlF₆, Cs₂NaFeF₆, Rb₂LiFeF₆ (см. приложение). Встречаются соединения не испытывающие фазовых переходов.

Многие кристаллы представляют интерес для изучения физических свойств, как с фазовыми переходами, так и без них, но желательно предварительно знать поведение структуры при изменении термодинамических условий (в первую очередь – температуры). Пока достоверно известны только четыре соединения, остающиеся кубическими при охлаждении до 4 К. Это Cs₂NaHoF₆, Rb₂NaErF₆, Rb₂NaEuF₆, Rb₂NaYbF₆ [12, 24].

Целями настоящей работы являются:

1. Определение границ существования галоидных кубических эльпасолитоподобных структур.

2. В каких кристаллах возможны фазовые переходы при изменении температуры?

3. В каких соединениях фазовые переходы при понижении температуры маловероятны?

4. Публикация структурных данных.

Из структурных типов, представленных в табл. 1, к основным, наиболее распространенным, следует отнести структуры семейства эльпасолита (K₂NaAlF₆) и родственного им семейства криолита (β -, α -Na₃AlF₆). Среди соединений A₂⁺B⁺B³⁺X₆⁻ известны шестислойные политипы (*hcc*), структурный тип Cs₂NaCrF₆, подобные гексагональному BaTiO₃ [107, 124],.

Таблица 1. Структурные типы соединений А₂В'В''Х₆.

Обозначения. Симметрия: *с* - кубическая, *h* - гексагональная, *rh* - ромбоэдрическая, *t* - тетрагональная, *r* - ромбическая, *m* - моноклинная. *Z* - число формульных единиц A₂B'B''X₆ в элементарной ячейке. ВТФ - высокотемпературная фаза. НТФ - низкотемпературная фаза.

№ п/п	Тип или представитель	Синго- ния	Пространств. группа	Ζ	Литература	Примечание
1	K ₂ NaAlF ₆	С	<i>O</i> ^{,5} – <i>Fm</i> 3 <i>m</i>	4	[94]	
2	β-Na₃AIF ₆	С	0 _h ⁵ –Fm3m	4	[13, 119]	β-криолит
3	K_3TIF_6	С	T_h^4 – <i>Fd</i> 3	4,16,32	[21]	
4	K ₂ NaAlF ₆	С	<i>T_h</i> ⁶ – <i>Pa</i> 3	4	[93, 119]	эльпасолит
5	Cs ₂ LiAIF ₆	rh	D _{3d} ³ –PTm1	1	[88]	
6	$Hg_{3}NbF_{6}$	rh	D _{3d} ¹ –PT1 <i>m</i>	1	[23]	
7	K ₂ LiAIF ₆	rh	D _{3d} ³ –PTm1	3	[13, 21]	ВТΦ
8	Cs ₂ NaCrF ₆	rh	D _{3d} ⁵ – R T m	6	[11,12, 117]	<i>hcc</i> -упаковка
9	Na ₃ EuCl ₆	rh	C _{3<i>i</i>} ² – R T	3	[8, 75]	
10	β-(NH ₄) ₃ ScF ₆	t	D_{4h}^6 –P4/mnc	2	[13, 21]	НΤΦ
11	K₃HoF ₆	t	D _{4h} ¹⁴ –P4 ₂ /mnm	2	[126]	
12	Rb₃TIF ₆	t	D _{4h} ¹⁷ —I4/mmm	2	[13]	
13	Rb_3DyF_6	t	D _{4h} ¹⁹ –I4 ₁ /amd	4,16	[64]	
14	Cs ₂ NaPrCl ₆	t	C _{4h} ⁵ –I4/m	2	[105]	
15	Rb ₃ BiBr ₆	r	D _{2h} ¹⁶ –Pnma	8	[68]	
16	$(N_2H_5)_3CrF_6$	r	$D_2^4 - P2_12_12_1$	4	[60]	
17	Li ₃ AIF ₆	r	C _{2v} ⁹ –Pna2 ₁	8	[25]	

№ п/п	Тип или представитель	Синго- ния	Пространств. группа	Z	Литература	Примечание
18	Cs ₂ LiAIF ₆	r	?	4	[9]	
19	Li ₃ CrF ₆	r	?	4	[62]	
20	Rb ₂ LiAIF ₆	r	?	8	[42]	
21	α -Na ₃ AIF ₆	т	$C_{2h}^{5} - P2_{1}/n$	2	[13, 93]	α-криолит
22	Rb ₂ LiCrF ₆	т	C2 ₁ ; C2/m	4	[63]	
23	Cs ₃ BiCl ₆	т	C_{2h}^{6} —C2/c	8	[17]	

Рис. 1. Структуры типов перовскита (*a*) и эльпасолита (*б*).

Представители этих структурных семейств составляют около 80% от числа всех известных галоидных соединений. Структуры их основаны на объемном каркасе из октаэдров В³⁺Х₆⁻ и В⁺Х₆⁻ (или А⁺Х₆⁻), который может быть различным образом искажен.

Элементарную ячейку кубического эльпасолита (см. рис. 1) можно представить как ячейку перовскита с удвоенными параметрами и атомами галогена, смещенными в сторону высокозарядного катиона.

Минерал эльпасолит (K_2NaAlF_6) (Округ Эль Пасо, Калифорния) имеет кубическую структуру, но с пониженной симметрией и пространственной группой T_h^6 –*Pa*3. Состав его отличается от теоретического. В нем недостаток калия (~4%), небольшой избыток натрия и алюминия, есть примеси Mg и Ca [119]. Для большинства синтетических кристаллов приводится пространственная группа $O_h^5 - Fm3m$ [13, 53, 88, 94]. Это позволяет предположить, что пространственная группа *Pa*3 присуща только минералу эльпасолиту.

Частным случаем соединений $A_2^+B^+B^{3+}X_6^-$ являются кристаллы, в которых ионы A^+ и B^+ химически тождественны. При этом один и тот же тип атомов занимает все кубооктаэдры и половину октаэдрических пустот. Формулу такого соединения принято писать как A_3BX_6 , но ее можно представить в виде $A_2[AB]X_6$, подчеркивая тем самым родство с эльпасолитом. Кубическая фаза таких соединений принадлежит тоже к пространственной группе *Fm3m* (*Z* = 4) и имеет несколько обозначений: β-криолит (β-Na₃AIF₆), K₃FeF₆ и (NH₄)₃AIF₆.

Имеющиеся данные свидетельствуют о том, что 24 иона X смещены с линии связи $[A^+-X-B^{3+}]$ и статистически размещены по 192 позициям (x, y, z) с вероятностью 1/8. Из геометрических представлений можно считать, что при существенных различиях в размерах октаэдров $B^{3+}X_6$ и B^+X_6 и при сильном несоответствии иона A размеру кубооктаэдрической пустоты (симметрия места T_h) в структуре эльпасолита появляются искажения разных типов. Эти ограничения особенно характерны для соединений A₃BX₆, и все кристаллы таких составов при нормальных температурах имеют искаженные структу-

5

ры. Таким образом описанные структуры различаются величиной искажений анионного октаэдрического каркаса или упаковкой слоев АХ₃ и могут быть отнесены к единому семейству и по аналогии со структурами перовскита названы семейством эльпасолитоподобных структур, см. таблицу структурных данных в приложении. Структуры типов эльпасолита и β-криолита могут иметь однотипные низкотемпературные искаженные фазы. Примером являются низкотемпературные фазы Rb₂KYF₆ [1] и α-

Рис. 2. Область существования эльпасолитоподобных структур.

К началу выращивания кристаллов – эльпасолитов (1975 г.) ротационных структурных фазовых переходов (СФП) в них нам не было известно, но по аналогии с перовскитами их следовало ожидать. При изучении кристаллов Cs₂NaB³⁺Cl₆, B³⁺ = Pr, Nd, Ві, были обнаружены СФП при температурах 153, 132, 114 К, соответственно [108]. В кубических эльпасолитах анионные октаэдры, как правило, разновелики. Анионный кубооктаэдр, в котором находится катион А, деформирован. Поэтому состояние связей А–Х сильно влияет на устойчивость кубической фазы.

Оказалось, что напряженности связей А–Х

 $\mu_{A} = \{ [I_{A-X} / (R_{A} + R_{X})] - 1 \} \cdot 100 \ (\%), \tag{5}$

где I_{A-X} длина связи A–X, R_A , R_X радиусы ионов A и X,

в кубических структурах, как правило, положительны и значения μ_A возрастают с увеличением радиуса 3-х валентного катиона. В трех изученных эльпасолитах температуры переходов повышались с увеличением μ_A . Были синтезированы кристаллы фтористых эльпасолитов с крупными катионами ${\rm Bi}^{3+}$, ${\rm Dy}^{3+}$, ${\rm Ho}^{3+}$, в которых обнаружились СФП и их последовательности [19, 35]. Результаты наших исследований и данные других авторов подтверждают предсказанную тенденцию к повышению СФП по мере возрастания μ_A .

Из-за разницы в зарядах катионов B⁺ и B³⁺, даже при одинаковых размерах, анион, расположенный между ними, всегда смещен в сторону высокозарядного катиона. При уменьшении параметра аниона X от величины 0,25*a* (как могло быть в структуре типа перовскита) до 0,21*a*, расстояния A– X в кубооктаэдрах увеличиваются, но не намного (при *a* = 10Å, Δ = 0,022Å). В такой структуре анионы, расположенные вокруг катиона B³⁺ сближаются и существенно, а анионы, расположенные вокруг катиона B⁺ расходятся (октаэдр разбухает). Расчет показывает, что при этом расстояния: A–X увеличиваются на 0,6%, расстояния X–X и B³⁺–X уменьшаются на 16%, и состояние их тоже будет влиять на устойчивость структуры.

2. Определение области существования кубических структур

2.1. Расчет параметров элементарных ячеек

Формула для расчета параметров элементарных ячеек кубических эльпасолитов была определена по методике, описанной в [109, 110] в виде линейного уравнения:

 $a_{\rm p} = 1,336 {\rm R}_{\rm A} + 0,796 {\rm R}_{\rm B}^{+} + 1,586 {\rm R}_{\rm B}^{-3+} + 3,326 {\rm R}_{\rm X},$ (6)

где R – радиусы ионов A, B, X по системе Шеннона [89] в соответствии с координациями.

Соотношения между экспериментальными и рассчитанными параметрами представлены на рис. 3. Проверка производилась путем сравнения рассчитанных и экспериментальных значений для 98 кубических фаз. Максимальное расхождение рассчитанных параметров кубических ячеек для фторидов, хлоридов, бромидов составляет от +1,60 до -1,26%.

2.2. Расчет параметра аниона

В Cs₂NaNdCl₆ [105] при понижении температуры от 278 до 148 К относительная величина свободного параметра хлора практически не меняется, но уменьшается размер кубической ячейки. Исходя из строения структуры (см. рис. 1), считая ионы шарами, параметр аниона можно определить по формуле: $z_{\rm X} = ({\rm R_B}^{3+} + {\rm R_X})/2({\rm R_B}^{3+} + {\rm R_B}^+ + 2{\rm R_X})$. Максимальные отклонения рассчитанных значений от экспериментальных составляют ±5%.

Точность немного повышается при усреднении экспериментальных значений относительного свободного параметра выражением (см. рис. 4)

$$z_{\rm X} = 0,248 + 0,048 \cdot \ln({\rm R_B}^{3+}/{\rm R_B}^{+}).$$
 (7)

В дальнейших расчетах мы пользовались этой формулой.

2.3. Расчет напряженностей связей

Напряженности связей по Фесенко [124] представляют собой результат сравнения межатомных расстояний с суммой радиусов соответствующих ионов (ненапряженных расстояний) в относительных единицах. Для кубических эльпасолитов эти формулы имеют вид:

$$\mu_{B}^{3+} = \left(\frac{a \cdot zx}{R_{B3+} + Rx} - 1\right) \cdot 100 \,(\%) \tag{8}$$
$$\mu_{B}^{+} = \left(\frac{a \cdot (0, 5 - zx)}{R_{B+} + Rx} - 1\right) \cdot 100 \,(\%) \tag{9}$$
$$\mu_{A} = \left(\frac{a \cdot \sqrt{2}}{4(R_{A} + Rx)} - 1\right) \cdot 100 \,(\%) \tag{10}$$

Усредненную напряженность связей катионов В можно определить, минуя величину свободного параметра аниона, по формуле:

 $\mu_{\rm B} = \{ [a/(R_{\rm B3+} + R_{\rm B+} + 2R_{\rm X})] - 1 \} \bullet 100 \ (\%)$ (11)

Результаты расчетов для 44 кубических галоидных эльпасолитов, у которых известны координаты анионов (фториды и хлориды), показали, что связи А–Х, как правило немного растянуты, а связи В–Х сжаты. За пределы существования кубических структур были выбраны значения:

Далее был выполнен расчет напряженностей в связях катион–анион для различных комбинаций ионов с помощью электронной таблицы Excel 7. Результаты для разных составов графически представлены на рис. 5. Видно, что область существования кубических фаз (*c*) имеет замкнутые границы. Слева от нее должны существовать *hcc*-политипы, справа искаженные эльпасолитоподобные структуры (*c*²).

На рисунке 5 приведены области существования кубических фаз в различных составах галоидных эльпасолитов (при комнатной температуре).

Обозначения структур:

- 1 кубический эльпасолит.
- 2 искаженный эльпасолит.
- 3 *а-криолит.*
- 4 hcc политип
- 5 другие структуры

В некоторых системах искаженные фазы обнаруживаются вблизи границ. Эти закономерности подтверждаются структурными данными соединений $A_2NaB^{3+}F_6$ и $A_2KB^{3+}F_6$.

В таблице 2 структурные данные для ряда галоидных соединений A₂B'B''X₆ представлены на фоне рассчитанной области существования кубических фаз. Видно, что потенциальные возможности

этих систем еще не исчерпаны полностью, можно синтезировать не одну сотню новых кубических эльпасолитов. В табл. 2 не вошли структуры со смешанными катионами. Эти сведения можно найти в работах, цитируемых в приложении.

Таблица 2 (продолжение)

Хлориды $B^+ = Li$

Хлориды $B^+ = Na$

Таблица 2 (продолжение)

Бромиды $B^+ = Na$

Бромиды $B^+ = K$

Таблица 2 (окончание)

Иодиды $B^+ = Na$

3. Структуры с фазовыми переходами

Рис. 6. Соотношения между напряженностями связей и температурами фазовых переходов в кубических галоидных эльпасолитах. На рис. 6 представлены соотношения между напряженностями связей и температурами переходов в искаженные структуры. Тенденция к повышению температур ротационных фазовых переходов по мере увеличения напряженностей в связях В–Х и А–Х есть, но разброс точек большой и четких зависимостей не прослеживается. На основании этих данных можно сказать, что

1. Максимальные температуры фазовых переходов в кубических галоидных эльпасолитах не будут превышать 500 К.

2. При μ_A = (от 0 до +3)% и μ_B^{3+} = (от 0 до -3)% фазовые переходы маловероятны. Можно ожидать, что в других структурах с такими параметрами, которые представлены в табл. 3, фазовых переходов не будет.

В таблице 3 представлены известные и возможные соединения с кубической решеткой, в которых структурные фазовые переходы при понижении температуры маловероятны.

✓ Галочкой отмечены известные соединения.

Таблица 3.

Кристалл	а _{расч} . (Å)	zχ	μ _{B3+} (%)	μ _A (%)	μ _{B+} (%)
Фторилы	(^)				
	0.072	0.040	1 5	0.1	0.4
CS ₂ NaYF ₆ ✓	9,073	0,242	-1,5	-0,1	-0,4
Cs₂NaHoF ₆ ✓	9,075	0,242	-1,5	0,0	-0,4
Cs₂NaTbF ₆ ✓	9,110	0,243	-1,7	0,3	-0,5
Cs_2NaGdF_6	9,134	0,244	-1,7	0,6	-0,5
Cs_2NaEuF_6	9,148	0,244	-1,8	0,8	-0,5
$Cs_2NaSmF_6\checkmark$	9,165	0,245	-1,9	0,9	-0,5
Cs_2NaPmF_6	9,184	0,246	-1,9	1,2	-0,6
Cs_2NaNdF_6	9,205	0,246	-2,0	1,4	-0,6
Cs ₂ NaPrF ₆	9,216	0,247	-2,1	1,5	-0,6
Cs_2NaCeF_6	9,248	0,248	-2,2	1,9	-0,6
Cs ₂ NaBiF ₆	9,280	0,248	-2,3	2,2	-0,7
Cs_2NaLaF_6	9,283	0,249	-2,3	2,2	-0,7
Хлориды					
Cs ₂ LiGdCl ₆	10,624	0,258	-0,2	1,8	0,0
Cs ₂ LiEuCl ₆	10,639	0,259	-0,2	1,9	-0,1
Cs ₂ LiSmCl ₆	10,656	0,259	-0,2	2,1	-0,1
Cs ₂ LiPmCl ₆	10,675	0,260	-0,3	2,3	-0,2
Cs ₂ LiNdCl ₆	10,696	0,260	-0,3	2,5	-0,3
Cs ₂ LiPrCl ₆	10,707	0,261	-0,3	2,6	-0,3
Cs ₂ LiCeCl ₆	10,739	0,262	-0,4	2,9	-0,4

Кристалл	а _{расч} .	ZX	μ _{B3+} (%)	μ _A (%)	μ _{B+} (%)
	(Å)				
Бромиды					
Cs ₂ LiLuBr ₆	11,059	0,254	-0,4	1,8	0,0
Cs ₂ LiYbBr ₆	11,070	0,254	-0,4	1,9	0,0
Cs ₂ LiTmBr ₆	11,088	0,255	-0,4	2,1	-0,1
Cs ₂ LiYBr ₆	11,119	0,256	-0,4	2,2	-0,2
Cs ₂ LiHoBr ₆	11,121	0,256	-0,4	2,4	-0,3
Cs ₂ LiDyBr ₆	11,138	0,257	-0,4	2,5	-0,4
Cs ₂ LiTbBr ₆	11,155	0,257	-0,4	2,7	-0,5
Cs ₂ LiGdBr ₆	11,178	0,258	-0,4	2,9	-0,6
Cs ₂ LiEuBr ₆	11,192	0,259	-0,5	3,0	-0,7
Rb ₂ LiScBr ₆	10,105	0,247	-2,3	1,2	-0,5
Rb ₂ LiInBr ₆	10,192	0,250	-2,2	2,1	-1,0
Rb ₂ LiLuBr ₆	10,288	0,254	-2,2	3,0	-1,5
Иодиды					
Cs ₂ LiScl ₆	11,615	0,247	-2,6	0,7	-0,7
Cs ₂ LiInI ₆	11,703	0,250	-2,3	1,4	-1,3
Cs ₂ LiLul ₆	11,799	0,254	-2,1	2,2	-1,9
Cs ₂ LiYbI ₆	11,810	0,254	-2,1	2,3	-2,0
Cs ₂ LiTml ₆	11,830	0,255	-2,0	2,5	-2,1
Cs ₂ LiYI ₆	11,861	0,256	-2,0	2,8	-2,3
Cs ₂ LiHol ₆	11,863	0,256	-2,0	2,8	-2,3
Cs ₂ LiDyl ₆	11,880	0,257	-2,0	2,9	-2,4
Cs ₂ LiTbl ₆	11,898	0,257	-2,0	3,1	-2,5

_

Параметры элементарных ячеек в хлоридах и иодидах рассчитывались по формуле (6). Параметры для фторидов определялись по другим формулам, которые дают более точные результаты [109, 110].

Для составов $Cs_2B^+B^{3+}F_6$ $a = 1,099R_B^+ + 1,587R_B^{3+} + 6,524$, (±1%).

Для составов $Cs_3B^+B^{3+}Br_6 a = 0,708R_B^+ + 1,548R_B^{3+} + 9,188 (\pm 0,3\%).$

4. Заключение

На основании изложенного можно сделать некоторые выводы:

1. Область существования кубических структур при одинаковых анионах, с возрастанием размера катиона В⁺ увеличивается и сдвигается в сторону крупных катионов А. Для формирования таких кубических структур требуются очень крупные катионы А.

2. Большинство кубических фаз реализуется с участием натрия в качестве катиона В⁺. В бромидах и иодидах есть вероятность синтеза новых соединений с кубическими структурами. Это заключение подтверждается. В банке структурных данных [53] мы обнаружили соединения Cs_2NaErl_6 и Cs_2LiScl_6 . Первое в высокотемпературной фазе имеет эльпасолитную структуру, ниже $110^{\circ}C$ становится гексагональным, но эльпасолитоподобным. Второе соединение обладает гексагональной структурой типа Cs_2LiGaF_6 (в другом обозначении тип Cs_2LiAIF_6). Кроме того при исследовании диаграмм состояния были обнаружены соединения $Cs_3B^{3+}I_6$, где $B^{3+} = La$, Nd, Pr, Dy, Sm, Gd, Er [67]. Эти данные позволяют рассчитывать на получение новых соединений среди бромидов и иодидов.

3. Возможен синтез новых кубических эльпасолитов с участием лития в качестве катиона В⁺ в составах с крупными анионами Br⁻ и I⁻ (см.табл. 2).

4. Вероятность отсутствия фазовых переходов, оцененная на основании рассчитанных напряженностей в связях, не 100%. В качестве исключения можно привести CsNaDyF₆ (см. рис. 6), напряженности связей катионов в кубической фазе которого имеют малые значения, а фазовый переход происходит при 360 К.

5. Большинство кубических галоидных эльпасолитов при понижении температуры будут испытывать структурные фазовые переходы.

Приложение. Структуры соединений А₂В⁺В³⁺Х₆⁻ (галогениды)

Обозначения. Симметрия: *с* – кубическая, *h* – гексагональная, *rh* – ромбоэдрическая, *t* – тетрагональная, *r* – ромбическая, *m* – моноклинная, *tr* – триклинная. ВТФ – высокотемпературная фаза. НТФ – низкотемпературная фаза. ФП – фазовый переход. ФВД – фаза высокого давления. *hcc* – гексагонально-ромбоэдрический политип. □ – вакансия.

Соединение	Фаза, условия	Про- стран		Ячейка, Å, град.		Ζ	Примечания	Литература	
	существования	группа	а	b	С	α, β, γ			
Фториды									
Ag ₂ LiAIF ₆		Fm3m	7,67				4		[53]
Ag ₂ NaAlF ₆		Fm3m	7,94				4		[89]
Cs ₂ AgAlF ₆	hcc	R Tm	6,267		30,75		6		[89]
Cs ₂ AgAlF ₆	<i>р</i> > 60 кбар, 500 К	Fm3m	8,72				4	ФВД	[89]
Cs ₂ AgInF ₆		Fm3m	9,059				4		[88]
Cs ₂ CdCoF ₆		R Tm	6,288		30,76		6		[53]
Cs ₂ CdNiF ₆		R Tm	6,291		30,59		6		[53]
Cs ₂ CoMnF ₆		R Tm	6,213		30,22		6		[53]
Cs ₂ MgMnF ₆		R Tm	6,219		29,99		6		[53]
Cs ₂ MnNiF ₆		R Tm	6,201		29,99		6		[53]
$Cs_2Cu^{2+}_{0.5}\Box_{0.5}Cu^{3+}F_6$		I4/mmm	6,234		8,864		2		[51]
Cs ₂ KAIF ₆		Fm3m	8,881				4		[89]
Cs ₂ KCeF ₆		С	9,655				4		[32]
Cs ₂ KCeF ₆	>244 K	С	9,610				4		[68]
Cs ₂ KCoF ₆		Fm3m	8,998				4		[12]
Cs ₂ KCoF ₆		Fm3m	8,979				4		[8]
Cs ₂ KCrF ₆		Fm3m	8,990				4		[12]
Cs ₂ KCrF ₆		Fm3m	9,004				4		[92]
Cs ₂ KCuF ₆		Fm3m	8,935				4		[52]
Cs₂KCuF ₆		Fm3m	8,894				4		[59]
Cs₂KDyF ₆		С	9,470				4		[32]
Cs₂KDyF ₆	>169 K	Fm3m	9,464				4	293 K	[96, 107, 108]
Cs ₂ KDyF ₆	<169 K	I4/m	6,6803		9,4654		2	113 K	[96, 107]

Cs ₂ KDyF ₆		I4/m	9,4474	9,4654	4	113 K	[108]
Cs ₂ KErF ₆		С	9,433		4		[32]
Cs ₂ KErF ₆		С	9,46		4		[91]
Cs ₂ KEuF ₆		С	9,526		4		[32]
Cs ₂ KFeF ₆		Fm3m	9,046		4		[12]
Cs ₂ KFeF ₆		Fm3m	6,041		4		[7]
Cs ₂ KGaF ₆		С	8,975		4		[68]
Cs ₂ KGdF ₆		С	9,523		4		[32]
Cs ₂ KHoF ₆		С	9,464		4		[32].
Cs ₂ KHoF ₆	>150 K	Fm3m	9,450		4		[56, 96]
Cs ₂ KHoF ₆	<150K	I4/m	6,6064	9,4503	2	12,5 K	[56, 96]
Cs ₂ KInF ₆		С	9,219		4		[50, 68]
Cs ₂ KLaF ₆		С	9,689		4		[32]
Cs ₂ KLaF ₆		С	9,728		4		[102]
Cs ₂ KLuF ₆		С	9,383		4		[32]
Cs ₂ KMnF ₆		I4/mmm	8,933	9,265	4		[84]
Cs ₂ KMnF ₆	>803 K	Fm3m	9,067		4	при 873 К	[105A]
Cs ₂ KMnF ₆	<803 K	I4/mmm	6,319	9,257	2	-	[105A]
Cs ₂ KMoF ₆		С	9,210		4		[49]
Cs ₂ KNdF ₆		С	9,610		4		[32]
Cs ₂ KNdF ₆	>241 K	С	9,606		4	ФП:241, 163К	[115]
Cs ₂ KNiF ₆		Fm3m	8,936		4		[4]
Cs ₂ KPdF ₆	>328 K	С	9,06		4	при 333 К	[98]
Cs ₂ KPdF ₆	<328 K	t	9,04	9,32	4		[98]
Cs ₂ KPrF ₆		С	9,696		4		[24]
Cs ₂ KPrF ₆		С	9,625		4		[32, 101]
Cs ₂ KRhF ₆		С	9,049		4		[104]
Cs ₂ KRhF ₆		С	9,055		4		[53]
Cs ₂ KScF ₆		С	9,352		4		[50]
Cs ₂ KScF ₆		С	9,32		4		[68]
Cs ₂ KSmF ₆		с	9,554		4		[32]
Cs ₂ KTbF ₆		С	9,499		4		[32]
Cs ₂ KTiF ₆		Fm3m	9,115		4		[48]
Cs ₂ KTiF ₆		Fm3m	9,124		4		[6]

Cs ₂ KTIF ₆		Fm3m	9,365				4		[50, 68]
Cs ₂ KTmF ₆		С	9,416				4		[32]
Cs ₂ KVF ₆		С	9,044				4		[12]
Cs ₂ KVF ₆		Fm3m	9,047				4		[5]
Cs ₂ KYF ₆		С	9,445				4		[102]
Cs ₂ KYbF ₆		С	9,399				4		[32]
Cs ₂ LiAIF ₆		h	6,21		5,00		1		[89]
Cs ₂ LiAIF ₆		r	6, 21	10,72	4,99		4		[9]
Cs ₂ LiCrF ₆		h	6,248		5,106		2		[10]
Cs ₂ LiCrF ₆	50 кбар, 600 ⁰ С	rh	6,162		29,38		6		[10]
Cs ₂ LiCrF ₆		Pb, 2/b	5,387	6,249	5,110	β =90.68	1		[63]
Cs ₂ LiCuF ₆		rh	6,215		5,033	-	1	тип Cs ₂ LiGaF ₆	[52]
Cs ₂ LiFeF ₆	50 кбар, 600 ⁰ С	rh	6,187		29,67		6	ФВД	[10]
Cs ₂ LiGaF ₆		r	6,247	10,69	29,26				[10]
Cs ₂ LiGaF ₆		<i>P</i> T <i>m</i> 1						тип Cs ₂ LiGaF ₆	[77]
Cs ₂ LiGaF ₆		h	6,249		5,086		2		[10]
Cs ₂ LiGaF ₆	30 кбар, 600 ⁰ С	rh	6,203		29,26		6	ФВД	[10]
Cs ₂ NaAlF ₆	hcc	R Tm	6,188		29,76		6		[12]
Cs ₂ NaAlF ₆	hcc	R Tm	6,176		29,82		6		[117]
Cs ₂ NaAlF ₆	hcc	R Tm	6,183		29,87		6		[89]
Cs ₂ NaAlF ₆	hcc	rh	6,179		29,84		6		[10]
Cs ₂ NaAlF ₆	70 кбар, 600 ⁰ С	rh	6,149		14,93		3	ФВД	[10]
Cs ₂ NaAlF ₆	80 кбар, 600 ⁰ С	С	8,628				4	ФВД	[10]
Cs ₂ NaCeF ₆		С	9,26				4		[68]
Cs ₂ NaCoF ₆	hcc		6,240		30,30		6		[12]
Cs ₂ NaCoF ₆	hcc		6,23		30,32		6		[8]
Cs ₂ NaCrF ₆	hcc	R Tm	6,243		30,33		6	тип Ca ₂ NaCrF ₆	[11, 10, 117]
Cs ₂ NaCrF ₆	25 кбар, 800 ⁰ С	rh	6,213		15,11		3	ФВД	[10]
Cs ₂ NaCrF ₆	30 кбар, 600 ⁰ С	С	8,706				4	ФВД	[10]
Cs ₂ NaCrF ₆	hcc	rh	6,231		30,24		6		[12]
Cs ₂ NaCrF ₆		C2; C2/m	10,808	6,245	10,261	β =100,06	4		[63]
Cs ₂ NaCuF ₆	hcc	R Tm	6,214		30,03		6		[40]
Cs ₂ NaCuF ₆			6,218		30,097		6		[52]

Cs ₂ NaCuF ₆		т	10,750	6,220	10,183	β =100,25	4		[29]
Cs ₂ NaDyF ₆		С	9,096				4		[32]
Cs ₂ NaDyF ₆	>360 K	Fm3m	9,148				4	при 473К	[96, 107, 108]
Cs ₂ NaDyF ₆	<360 K	P4/mbm	6,416		9,095		2	при 293К	[96, 107, 108]
Cs ₂ NaErF ₆		С	9,060				4	-	[32]
Cs ₂ NaErF ₆		Fm3m	9,041				4		[3]
Cs ₂ NaEuF ₆		С	9,154				4		[32]
Cs ₂ NaFeF ₆		R Tm	6,267		30,48		6		[10, 11, 12]
Cs ₂ NaFeF ₆		R Tm	6,291		30,532		6	тип Cs ₂ NaCrF ₆	[7]
Cs ₂ NaFeF ₆	15 кбар, 700 ⁰ С	rh	6,241		15,22		3	ФВД	[10]
Cs ₂ NaFeF ₆	>30 кбар, 250 ⁰ С	Fm3m	8,739				4	ФВД	[46]
Cs ₂ NaFeF ₆	20 кбар, 600 ⁰ C	С	8,774				4	ФВД	[10]
Cs ₂ NaGaF ₆	hcc		6,22		30.19		6		[12]
Cs ₂ NaGdF ₆		С	9,136				4		[32]
Cs ₂ NaHoF ₆		С	9,078				4		[32]
Cs ₂ NaHoF ₆		Fm3m	9,073				4	ФП нет	[24]
Cs ₂ NaInF ₆		Fm3m	8,905				4		[84, 85]
Cs ₂ NaLuF ₆		С	9,014				4		[32]
Cs ₂ NaMnF ₆	>5 кбар	Fm3m	8,765				4	ФВД	[71]
Cs ₂ NaMnF ₆		C2/m						комн. т-ра	[71]
Cs₂NaMnF ₆		R3m	9,265		30,54		6	закаленная ф.	[71]
Cs ₂ NaNiF ₆		rh	6,20		30,03		6		[40]
Cs ₂ NaScF ₆		Fm3m	8,853				4		[84]
Cs ₂ NaSmF ₆		С	9,173				4		[32]
Cs ₂ NaSmF ₆		С	9,163				4		[3]
Cs ₂ NaTbF ₆		С	9,099				4		[32]
Cs ₂ NaTbF ₆		С	9,107				4		[3]
Cs₂NaTiF ₆		<i>P</i> T <i>m</i> 1	6,2879		15,309		3	тип Cs ₂ NaCrF ₆	[16]
Cs ₂ NaTiF ₆			6,272		30,91		6		[8]
Cs ₂ NaTIF ₆		Fm3m	8,995				4		[84]
Cs₂NaTmF ₆		С	9,042				4		[32]
Cs ₂ NaVF ₆		m	10,90	6,25	10,36	β=100,5	4		[53]
Cs ₂ NaVF ₆	hcc	rh	6,267		30,40		6		[12]
Cs ₂ NaVF ₆	hcc	rh	6,265		30,49		6		[10]

Cs ₂ NaVF ₆	50 кбар. 600 ⁰ С	С	8.752				4		[10]
Cs ₂ NaYbF ₆		c	9.022				4		[3]
Cs ₂ NaYbF ₆		C	9.028				4		[32]
Cs ₂ NaYF ₆		c	9.056				4		[3]
		С	9.075				4		[102]
		Fm3m	9,051				4		[189]
		С	9,817				4		1321
		С	9,75				4		118, 681
		Fm3m	9,135				4		[12]
Cs ₂ RbCrF ₆		Fm3m	9,15				4		[12]
Cs_2RbCuF_6		Fm3m	9,106				4		[52]
Cs ₂ RbDyF ₆		С	9,661				4		[32]
Cs ₂ RbDyF ₆	>251 K	Fm3m	9,644				4	при 293 К	[2, 107, 108]
Cs ₂ RbDyF ₆	(251j205)K	I4/m	9,7936		9,6513		4	при 208 К	[107, 108]
Cs ₂ RbDyF ₆	(205j195)K	C_{2h}^{3}	6,799	6,826	9,621	β =90,14	2	при 200 К	[2]
Cs ₂ RbDyF ₆	<195 K	$C_{2h}{}^5$	6,792	6,773	9,596	β= 90,24	2	при 113 К	[2]
Cs ₂ RbErF ₆		С	9,619			-	4		[32]
Cs ₂ RbEuF ₆		С	9,722				4		[32]
Cs ₂ RbGdF ₆		С	9,703				4		[32]
Cs ₂ RbGdF ₆		С	9,710				4		[53]
Cs ₂ RbHoF ₆	>270K	Fm3m	9,642				4		[32, 115]
Cs ₂ RbHoF ₆	(270j197)K	t							[96]
Cs ₂ RbHoF ₆	<197 K	т							[96]
Cs ₂ RbLaF ₆		С	9,871				4		[32]
Cs ₂ RbLuF ₆		С	9,564				4		[32]
Cs ₂ RbNdF ₆		С	9,781				4		[32]
Cs ₂ RbPdF ₆	>383 K	С	9,22				4	при 393 К	[98]
Cs ₂ RbPdF ₆	<383 K	t	9,06		9,57		4		[98]
Cs ₂ RbPrF ₆		Fm3m	9,806				4		[32, 102]
Cs ₂ RbSmF ₆		С	9,668				4		[32]
Cs ₂ RbTbF ₆		С	9,625				4		[102]
Cs ₂ RbTmF ₆		С	9,602				4		[32]
Cs ₂ RbYF ₆		С	9,625				4		[102]
Cs ₂ RbYbF ₆		С	9,580				4		[32]

$\begin{array}{c} Cs_2TIAIF_6\\ Cs_2TICrF_6\\ Cs_2TIFeF_6\\ Cs_2TIFeF_6\\ Cs_2TIGaF_6\\ Cs_2TIInF_6\\ Cs_2TIMoF_6\\ Cs_2TIVF_6\\ Cs_3GdF_6\\ Cs_2GdF_6\\ Cs_2GdF_6\end{array}$	β-фаза	Fm3m Fm3m Fm3m C Fm3m C Fm3m C	9,070 9,166 9,222 9,211 9,182 9,445 9,393 9,234 9,875 6,004	0.902		4 4 4 4 4 4 4 4 4 2		[89] [12] [12] [7] [12] [88] [49] [5, 12] [65]
	α-фаза	l	0,904	9,003		2		
$CsRb_2InF_6$		Fm3m	9,283			4		[88]
		Fm3m	8,979			4		[89]
		Fm3m	8,360	10 754		4		
$K_2 \square A \square F_6$		P3III DTm	5,0145	13.734		2	ΔTΨ,ΨΠ.743 K	[21, 09, 100] [52]
K_2 LIAII 6 Kalialea		RTIII PTm	5,574	13,04	a-60 19	2 1	нтф	[33] [21 105]
K_2 LIAIL 6		RTIII PTm	5.62	27.62	α-00.18	6	τμη CeaNaCrEa	[21, 103] [07]
K_2 LIAIL 6		R1III PTm	5,02	27.02		6		[<i>31</i>] [/1]
		R1111 Em3m	7 8/2	21,510		1	ЫΤΦ	[41]
K_2 LIAII 6 Kalialea	$50 \nu 620 600^{\circ} C$	r mom	7,042			4 1	фВЛ	[4]] [10]
K ₂ LiCoE ₆	50 Koap, 000 C	Em3m	7,005			4	ФВД при 300 К	[97]
K ₂ LiCrF _e		C C	7,98			4		[12 63]
K ₂ LiCuF ₆		C C	7.935			4		[97]
K ₂ LiCuF ₆		c	7,925			4		[52]
K ₂ LiFeF ₆		С	8,02			4		[12]
K ₂ LiGaF ₆		R Tm	5,863	28,563		6		[41]
K ₂ LiGaF ₆		С	8,208			4	ФВД	[41]
K ₂ LiGaF ₆		С	7,98			4	при 300 К	[97]
K ₂ LiInF ₆		С	8,24			4	при 300 К	[97]
K ₂ LiPdF ₆	>200 K	С	8,154			4	при 300 К	[97, 98]
K ₂ LiPdF ₆	<200 K	F4/mmm	8,024	8,234		4	при 80 К	[98]
K ₂ LiVF ₆		Fm3m	8,013			4		[53]
K ₂ LiVF ₆		c?	8,02			4		[12]

K ₂ NaAlF ₆		Fm3m	8,122				4		[95]
K ₂ NaAIF ₆		С	8,09				4		[84, 102, 119]
K ₂ NaCoF ₆			8,22				4		[13]
$K_2 NaCrF_6$		Fm3m	8,266				4		[13, 92]
$K_2 NaCrF_6$		Fm3m	8,273				4		[63]
$K_2 NaCrF_6$		Fm3m	8,232				4		[33]
K ₂ NaCrF ₆		Fm3m	8,275				4		[74]
K₂NaCuF ₆		Fm3m	8,204				4		[52, 84]
K₂NaCuF ₆		Fm3m	8,206				4		[40]
K ₂ NaDyF ₆	>480 K	Fm3m	8,871				4	при 573 К	[107, 108]
K ₂ NaDyF ₆	<480 K	I4/m	6,204		8,799		2	при 293 K	[107, 108]
K ₂ NaFeF ₆		Fm3m	8,323				4	•	[13]
K ₂ NaFeF ₆		Fm3m	8,112				4		[128]
$K_2 NaGaF_6$		С	8,246				4		[28]
K ₂ NaInF ₆		Fm3m	8.560				4		[84]
K ₂ NaMnF ₆		t	8,171		8,577		4		[13]
K ₂ NaMoF ₆		С	8,501				4		[49]
K ₂ NaNiF ₆		Fm3m	8,211				4		[4]
K ₂ NaPdF ₆	>381 K	С	8,40				4	при 393 К	[98]
K ₂ NaPdF ₆	<381 K	F4/mmm	8,30		8,72		4		[98]
K₂NaRhF ₆		С	8,362				4		[104]
K₂NaScF ₆		Fm3m	8,482				4		[84]
K ₂ NaTiF ₆		Fm3m	8,367				4		[13]
K ₂ NaTIF ₆		Fm3m	8,668				4		[84]
K ₂ NaVF ₆		Fm3m	8,338				4		[53]
K ₂ NaVF ₆		Fm3m	8,315				4		[12, 13]
K ₂ NaYF ₆		Fm3m	8,752				4		[102]
K ₂ NaYF ₆		Fm3m	8,711				4		[84]
Li₃CrF ₆		r	9,60	8,35	5,02		4		[62]
Na ₂ LiAIF ₆	>718 K	С	7,639				4	ВΤΦ	[47]
Na ₂ LiAIF ₆		rh	5,300		13,09		2		[53]
Na ₂ LiAIF ₆		m	7,538	7,516	7,525	β =90.81	4	ΗΤΦ	[47]
K₃GdF ₆	γ-фаза	С	9,305				4		[121]
K_3GdF_6	β-фаза	t	6,580		9,305		2	Тип Rb₃TIF ₆	[121]

K₃GdF ₆	α-фаза	m	6,368	6,520	9,069	β =90.67	2	ΗΤΦ	[121]
K₃GdF ₆	α-фаза	m	6,390	6,609	9,126	β =90.69	2	ΗΤΦ	[65]
Na ₃ VF ₆	<9 ['] 12 K	P2 ₁ /n	5,513	5,727	7,958	, β =90 ,33	2	(α-криолит)	[96, 83]
NH₄)₂KMnF ₆		m	6,153	6,151	9,346	β =91,37	2		[72]
NH ₄) ₂ NaMnF ₆		I4/mmm	5,915		8,740		2		[72]
$NH_4)_2NaScF_6$		С	8,599				4		[22, 102]
$NH_4)_3AIF_6$		FY3m	8,934				4		[53]
NH_4) ₃ CrF ₆		Fm3m	9,03				4		[53]
NH ₄) ₃ FeF ₆		FY3m	9,106				4		[53]
NH ₄) ₃ GaF ₆		t	6,36		9,14		2		[15]
NH ₄) ₃ InF ₆		с	9,32				4		[15]
NH ₄) ₃ ScF ₆		P2 ₁ /n	6,484	6,494	9,44	β =90,36	2		[99]
NH ₄) ₃ VF ₆		с	9,06				4		[53]
Rb(NH ₄) ₂ FeF ₆	>390 K	С							[98]
Rb ₂ AgAIF ₆		Fm3m	8,50				4		[89]
Rb ₂ AgInF ₆		Fm3m	8,897				4		[88]
Rb ₂ KAIF ₆		Fm3m	8,682				4		[89]
Rb ₂ KAIF ₆	>77 K	Fm3m	8,680				4	при 295 К	[58, 100]
Rb ₂ KAIF ₆	>77 K	Fm3m	8,637				4	при 80 К	[58, 100]
RbK ₂ AIF ₆		Fm3m	8,56				4		[53]
Rb ₂ KBiF ₆	>340 K	Fm3m	9,38				4	при 360 К	[58, 96, 100]
Rb ₂ KBiF ₆	<340 K	P2₁/n	6,516	6,721	9,294	β =90,10	2	при 80 К	[58, 96, 100]
Rb ₂ KCeF ₆		С	9,40				4		[18, 68]
Rb ₂ KCoF ₆		Fm3m	8,810						[12]
Rb ₂ KCoF ₆		Fm3m	8,809				4		[8]
Rb ₂ KCrF ₆	>153 K	Fm3m	8,809				4		[12, 96]
Rb ₂ KCrF ₆		Fm3m	8,810				4	при 295 К	[58, 100]
Rb ₂ KCrF ₆		Fm3m	8,817				4		[92]
Rb ₂ KCrF ₆	<153 K	t	6,152		8.849		2	при 80 К	[58, 96, 100]
Rb ₂ KCuF ₆		Fm3m	8,738				4		[40]
Rb ₂ KCuF ₆		С	8,753				4		[52]
Rb ₂ KDyF ₆	>381 K	Fm3m	9,370				4	при 443К	[19, 108, 116]
Rb ₂ KDyF ₆	<381 K	P2 ₁ /n	6,504	6,678	9,239	β =89,85	2	при 123К	[19, 108]

Rb ₂ KFeF ₆	>170 K	Fm3m	8,869				4		[74, 96, 100]
Rb ₂ KFeF ₆		С	8,868				4		[7]
Rb ₂ KFeF ₆	<170 K		6,162		8,914		2	при 80 К	[58, 100]
Rb ₂ KGaF ₆	>129 K	Fm3m	8,74				4		[37, 95, 96]
Rb ₂ KHoF ₆		Fm3m	9,367					>392 K	[96, 116]
Rb ₂ KHoF ₆	<392 K	P2 ₁ /n	6,469	6,577	9,276	β =90,22	2		[96, 116]
Rb ₂ KMnF ₆		I4/mmm	6,101		9,160		2		[92]
Rb ₂ KMoF ₆		С	8,911				4		[49]
Rb ₂ KNiF ₆		Fm3m	8,734				4		[4]
Rb ₂ KPdF ₆	>493 K	С	8,85				4	при 493 К	[98]
Rb ₂ KPdF ₆	<493 K		8,74		9,23		4		[98]
Rb ₂ KRhF ₆		С	8,876				4		[104]
Rb ₂ KScF ₆	>252 K	Fm3m	9,018				4	при 293 К	[96, 125]
Rb ₂ KScF ₆	(252j223) K	I4/m	6,358	6,358	9,019	β =90	2	при 230 К	[125]
Rb ₂ KScF ₆		I4/m	6,366		9,016		2		[31]
Rb ₂ KScF ₆	< 223 K	P21/n	6,347	6,348	8,994	β =89,91	2	при 150 К	[125]
Rb ₂ KScF ₆		P21/n	6,363	6,349	8,993	β =89,90	2		[31]
Rb ₂ KTbF ₆	>410 K	Fm3m	9,356				4		[95, 116]
Rb ₂ KTbF ₆	<410 K	P12 ₁ /n1	6,506	6,600	9,260	β =90,31	2		[95, 116]
Rb ₂ KTiF ₆		Fm3m	8,910				4		[48]
Rb ₂ KTiF ₆		Fm3m	8,932				4		[8]
Rb ₂ KVF ₆		Fm3m	8,855				4		[5]
Rb ₂ KVF ₆		С	8,875				4		[12]
Rb ₂ KYF ₆		Fm3m	9,293				4		[102]
Rb ₂ KYF ₆	>398 K	Fm3m	9,322				4	при 420 К	[96, 100]
Rb ₂ KYF ₆	<398 K	P2 ₁ /n	6,481	6,599	9,219	β =90,26	2	при 115 К	[100]
Rb ₂ KYF ₆	<398 K	P12 ₁ /n1	6,531	6,583	9,271	β=90,07	2		[44]
Rb ₂ LiAIF ₆	hcc		5,802		28,02		6		[12]
Rb ₂ LiAIF ₆		r	5,797	11,629	16,203		8		[42]
Rb ₂ LiCoF ₆	hcc		5,856		28,55		6		[12]
Rb ₂ LiCrF ₆	hcc	rh	5,865		28,61		6		[12]
Rb ₂ LiCrF ₆		m	10,255	5,890	9,736	β =100,29	4		[63]
Rb ₂ LiCuF ₆	hcc	R T m	5,844	-	28,301	, ,	6		[40]

Rb ₂ LiCuF ₆		rh	5,843		28,328		6		[52]
Rb ₂ LiCuF ₆		т	10,160	5,844	9,590	β =100,30	4		[29]
Rb ₂ LiFeF ₆		rh	5,891		28,77		6		[10, 12]
Rb ₂ LiFeF ₆		R Tm	5,880		28,790		6	тип Cs ₂ NaCrF ₆	[73]
Rb ₂ LiFeF ₆	>30 кбар, 250 ⁰ С	Fm3m	8,244				4	ФВД	[57]
Rb ₂ LiFeF ₆	50 кбар, 600 ⁰ С	С	8,248				4	ФВД	[53]
Rb ₂ LiFeF ₆	60 кбар, 700 ⁰ С	rh	5,881		14,36		3	ФВД	[10]
Rb ₂ LiGaF ₆	hcc		5,86		28,59		6		[12]
Rb ₂ LIVF ₆		C2/m	10,22	5,89	9,76	β =100,5	4		[53]
Rb ₂ LIVF ₆		rh	5,891		28,83	-	6		[10, 12]
Rb ₂ LIVF ₆	50 кбар, 600 ⁰ С	С	8,248				6		[10]
Rb ₂ NaAlF ₆		Fm3m	8,298				4		[12, 98]
Rb ₂ NaBiF ₆	>193 K	С	9,010				4		[115]
Rb ₂ NaCoF ₆		Fm3m	8,419				4		[12]
Rb ₂ NaCoF ₆		Fm3m	8,421				4		[8]
Rb ₂ NaCrF ₆		Fm3m	8,422				4		[12, 63]
Rb ₂ NaCrF ₆		Fm3m	8,418				4		[92]
Rb ₂ NaCuF ₆		Fm3m	8,368				4		[40]
Rb ₂ NaCuF ₆		С	8,371				4		[52]
Rb ₂ NaDyF ₆	>172 K	Fm3m	8,874				4	при 207 К	[96, 107]
Rb ₂ NaDyF ₆	<172 K	I4/m	6,223		8,896		2	при 17 К	[96, 107]
Rb₂NaDyF ₆	>190 K	Fm3m	8,909				4	при 293 К	[19, 108]
Rb₂NaDyF ₆	<190 K	I4/m	6,256		8,909		2	при 123 К	[19, 108]
Rb₂NaErF ₆		С	8,859				4	ФП нет	[24]
Rb₂NaErF ₆		С	8,867				4		[3]
Rb ₂ NaEuF ₆		С	8,973				4	ФП нет	[12, 24]
Rb₂NaFeF ₆		Fm3m	8,465				4]12]
Rb ₂ NaFeF ₆		Fm3m	8,462				4		[74]
Rb ₂ NaFeF ₆		Fm3m	8,464				4		[7]
Rb ₂ NaGaF ₆		С	8,406				4		[12, 28]
Rb ₂ NaGdF ₆		С	8,952				4		[24]
Rb ₂ NaGdF ₆	>218 K	С	8,978				4		[115]
Rb ₂ NaHoF ₆	>173 K	Fm3m	8,8735				4	при 207 К	[54, 107, 108
Rb₂NaHoF ₆	>172 K	Fm3m	8,865				4	при 205 К	[55]

Rb ₂ NaHoF ₆	<172 K	t	6,223	8,890	2	при 40 К	[55]
Rb ₂ NaHoF ₆	<173 K	I4/m	6,2233	8,8957	2	при 17 К	[107, 108]
Rb ₂ NaHoF ₆		I4/m	6,1912	8,8490	2	ΗΤΦ	[56]
Rb ₂ NaInF ₆	(комн. т-ра)	С	8,696		4		[58]
Rb ₂ NaInF ₆		С	8,643		4	при 80 К	[58]
Rb ₂ NaMnF ₆	>300 K	С					[98]
Rb₂NaMnF ₆	<300 K	F4/mmm	8,365	8,660	4		[92]
Rb ₂ NaMoF ₆		С	8,632		4		[49]
Rb ₂ NaNiF ₆	>152 K	С	8,376		4		[4]
Rb ₂ NaNiF ₆	<152 K	t	5,99	8,76	2	при 80 К	[58]
Rb ₂ NaPdF ₆	>388 K	С	8,57		4		[58]
Rb₂NaPdF ₆	>388 K	С	8,50		4	при 393 К	[98]
Rb ₂ NaPdF ₆	<388 K	t	8,47	8,76	4		[98]
Rb ₂ NaRhF ₆		С	8,492		4		[104]
Rb ₂ NaScF ₆		С	8,599		4		[27]
Rb₂NaSmF ₆		С	8,988		4		[3]
Rb ₂ NaTbF ₆		С	8,923		4		[24]
Rb ₂ NaTbF ₆		С	8,9208		4		[3]
Rb ₂ NaTiF ₆		С	8,469		4		[53]
Rb ₂ NaTiF ₆		С	8,533		4		[6]
Rb ₂ NaTmF ₆		Fm3m	8,839		4		[24]
Rb₂NaTmF ₆		I4/mmm				HTΦ	[96]
Rb ₂ NaVF ₆		С	8,468		4		[5, 12]
Rb₂NaYbF ₆		Fm3m	8,819		4	ФП нет	[24]
Rb ₂ NaYbF ₆		Fm3m	8,824		4		[3, 68]
Rb ₂ NaYF ₆		С	8,8693		4		[3]
Rb₃GdF ₆	β-фаза	С	9,377		4		[127]
Rb₃GdF ₆	β-фаза	С	9,492		4		[65]
Rb₃GdF ₆	α-фаза	t	6,632	9,377	2	Тип Rb₃TIF ₆	[127]
Rb₃GdF ₆	α-фаза	t	6,650	9,520	2	Тип Rb₃TIF ₆	[66]
Rb ₂ TIInF ₆	•	t	6,449	9.195	2		[88]
RbK ₂ AIF ₆		Fm3m	8,567		4		[89]
RbTIAgAIF ₆		Fm3m	8,517		4		[89]
RbTlAgInF ₆		Fm3m	8,896		4		[88]

RbTIKAIF ₆ RbTINaInF ₆ TI ₂ AgAIF ₆ TI ₂ AgIF ₆ TI ₂ AgIF ₆ TI ₂ KAIF ₆ TI ₂ KCrF ₆ TI ₂ KFeF ₆ TI ₂ KGaF ₆ TI ₂ KScF ₆ TI ₂ KVF ₆ TI ₂ LiFeF ₆ TI ₂ LiFeF ₆ TI ₂ LiGaF ₆ TI ₂ LiGaF ₆ TI ₂ LiGaF ₆ TI ₂ NaCrF ₆ TI ₂ NaCrF ₆ TI ₂ NaGaF ₆ TI ₂ NaRhF ₆ TI ₂ NaRhF ₆ TI ₂ NaScF ₆ TI ₂ NaScF ₆ TI ₂ NaScF ₆	40 кбар, 400 ⁰ С 40 кбар, 400 ⁰ С 40 кбар, 400 ⁰ С 100 кбар, 400 ⁰ С 40 кбар, 400 ⁰ С 40 кбар, 400 ⁰ С	Fm3m Fm3m Fm3m Fm3m Fm3m Fm3m C C C C C C C C C C C C C C C C C C	8,685 9,078 8,686 8,527 8,890 8,679 8,824 8,880 8,818 8,997 9,03 8,871 5,925 5,867 5,915 8,320 5,925 5,867 5,915 8,320 5,921 5,940 8,370 8,466 8,463 8,463 8,463 8,463 8,501 8,453 8,649 8,526 8,535 8,642 8,509	29,05 28,31 28,78 28,77 29,02	444444444466664664444444444444444444444	ФВД ФВД ФВД ФВД ФВД	[89] [88] [88] [89] [89] [12] [12] [12] [12] [12] [12] [12] [10] [10] [10] [10] [10] [10] [10] [10
TI ₃ InF ₆	<403 K	c t	8,509 6,454	9,155	4 2		[12] [96, 105]
Хлориды							
$\begin{array}{l} Cs_{0.25}Rb_{1.75}NaTmCl_{6}\\ Cs_{0.4}Rb_{0.6}LiSc_{0.9}Lu_{0.1}Cl_{6}\\ Cs_{0.5}Rb_{1.5}NaTmCl_{6}\\ Cs_{0.6}Rb_{1.4}LiScCl_{6} \end{array}$		P4/nbm Fm3m Fm3m P3m1	10,552 10,151 10,596 7,192	10,618 17,782	4 4 3		[77] [77] [77] [77]

Cs _{0.75} Rb _{1.25} NaTmCl ₆ Cs _{0.8} Rb _{1.2} LiSc _{0.6} Lu _{0.4} Cl ₆		Fm3m Fm3m Em3m	10,611 10,239 10,304				44		[77] [77] [77]
			10,004	7 004	15 000	440 7			
US _{1.5} K _{1.5} BIUI ₆		PP	13,556	7,664	15,320	α=119,7.	4		[14]
						β=106,26			
						γ =90,34			
Cs _{1.5} Rb _{0.5} NaTmCl ₆		Fm3m	10,611			•	4		[77]
Cs _{1.75} K _{1.25} BiCl ₆		PP	13,62	7,72	15,46	α=119,5	4		[14]
						β =106 .9			
						γ = 90.0			
Cs ₂ Au ⁺ Au ³⁺ Cl ₆		I4/mmm	7.222		10.824	,,.	2	структ. с	[20]
			,		- , -			квадратами	
Cs ₂ AqYCl ₆		Fm3m	10,69				4		[53]
		I4/mmm	7,240		10,87		2		[53]
Cs ₂ KBiCl ₆		Fm3m	11,09		,		4		[113, 114]
Cs ₂ KBiCl ₆		Fm3m	11,086				4		[14]
Cs ₂ KCrCl ₆		Fm3m	10,60				4		[113, 114]
Cs ₂ KCrCl ₆		Fm3m	10,633				4		[36]
Cs ₂ KEuCl ₆		Fm3m	11,1633				4		[103]
Cs ₂ KInCl ₆	>373K	Fm3m							[96]
Cs ₂ KInCl ₆	<373K	C2/c							[96]
Cs ₂ KScCl ₆		Fm3m	10,873				4		[79]
Cs ₂ KScCl ₆		Fm3m	10,875				4		[82]
Cs ₂ KSmCl ₆		Fm3m	11,21				4		[53]
Cs ₂ KTbCl ₆		Fm3m	11,1224				4		[103]
Cs ₂ Li _{0.5} Na _{0.5} ScCl ₆		P3m1	7,334		18,098		3		[77]
Cs ₂ LiBiCl ₆	псевдокубич.		10,70				4		[113, 114]
Cs ₂ LiDyCl ₆		Fm3m	10,49				4		[53]
Cs ₂ LiLuCl ₆	(6L) >783 K		7,56		18,597		3	при 798 К	[78]
Cs ₂ LiLuCl ₆	(783j598) K	Fm3m	10,549				4	при 598 К	[78]
Cs ₂ LiLuCl ₆	>598 K	Fm3m	10,408				4		[79]
Cs ₂ LiLuCl ₆	<598 K	rh	7,401		18,228		3	при 323К,	[78]
								тип ВТ	

								K ₂ LiAIF ₆	
Cs ₂ LiNdCl ₆		Fm3m	10,61				4		[53]
Cs ₂ LiSc _{0.1} Lu _{0.9} Cl ₆		P3m1	7,377		18,179		3		[77]
Cs ₂ LiSc _{0.2} Lu _{0.8} Cl ₆		P3m1	7,365		18,180		3		[77]
Cs ₂ LiSc _{0.3} Lu _{0.7} Cl ₆		R Tm	7,357		36,42		6	тип Cs ₂ NaCrF ₆	[77]
Cs ₂ LiSc _{0.5} Lu _{0.5} Cl ₆		R Tm	7,347		36,35		6	тип Cs ₂ NaCrF ₆	[77]
Cs ₂ LiSmCl ₆		Fm3m	10,57				4		[53]
Cs ₂ LiTmCl ₆		Fm3m	10,44				4		[53]
Cs ₂ NaAmCl ₆			10,855				4		[82]
Cs ₂ NaBiCl ₆	>100 K	Fm3m	10,839				4		[81, 82, 118]
Cs ₂ NaBiCl ₆	>99,8 K	Fm3m	10,866				4		[107, 108]
Cs ₂ NaBiCl ₆	<99,8 K	I4/m	7,590		10,862		2		[107, 108]
Cs ₂ NaBkCl ₆		С	10,805				4		[82]
Cs ₂ NaCeCl ₆		С	10,946				4		[82]
Cs ₂ NaCrCl ₆		Fm3m	10,27				4		[113, 114]
Cs ₂ NaCrCl ₆		<i>P</i> 3 <i>m</i> 1	7,230		17,912		3	комн. темп.	[36]
Cs ₂ NaDyCl ₆		Fm3m	10,743				4		[82]
Cs ₂ NaErCl ₆		Fm3m	10,704				4		[45, 82]
Cs ₂ NaEuCl ₆		Fm3m	10,810				4		[82]
Cs ₂ NaFeCl ₆		Fm3m	10,333				4		[82]
Cs ₂ NaGdCl ₆		С	10,792				4		[82]
Cs ₂ NaGdCl ₆		С	10,73				4		[112]
Cs₂NaHoCl ₆		С							[30]
Cs ₂ NaInCl ₆	>373 K	Fm3m	10,870				4		[43]
Cs ₂ NaInCl ₆		Fm3m	10,531				4		[82]
Cs ₂ NaInCl ₆	<373 K	C2/c	25,484	7,699	13,225	β =100,69	8	комн. темп.	[43]
Cs ₂ NaLaCl ₆	>208 K	Fm3m	10,992				4		[82, 96]
Cs ₂ NaLaCl ₆	<208 K	I4/m							[86, 96]
Cs ₂ NaLuCl ₆		С	10,655				4		[82]
Cs ₂ NaNdCl ₆	>132 K	Fm3m	10,8761				4	при 293К	[107, 108]
Cs ₂ NaNdCl ₆		Fm3m	10,889				4	-	[82]
Cs ₂ NaNdCl ₆	<132 K	I4/m	7,6377		10,8631		2	при 100К	[107, 108]
Cs ₂ NaPrCl ₆	>153 K	Fm3m	10,914				4	при 293К	[107, 108]

Cs ₂ NaPrCl ₆		Fm3m	10,912				4		[34, 82]
Cs ₂ NaPrCl ₆	<153 K	l4/m	7,6525		10,9173		2	при 100 К	[107, 108]
Cs₂NaPuCl ₆		С	10.889				4		[82]
Cs ₂ NaSbCl ₆		С	10,778				4	при 293 К	[82]
Cs₂NaSmCl ₆		С	10,834				4		[82]
Cs₂NaTbCl ₆		Fm3m							[30, 86]
Cs₂NaTbCl ₆		I4/m							[86]
Cs ₂ NaTICl ₆		С	10,623				4		[82]
Cs₂NaTmCl ₆		Fm3m	10,686				4		[82]
Cs ₂ NaTmCl ₆		С	10,685				4		[77]
Cs ₂ NaUCl ₆		Fm3m	10,937				4		[93]
Cs₂NaYbCl ₆		С						ΒΤΦ	[30, 86]
Cs ₂ NaYbCl ₆		I4/m						ΗΤΦ	[86]
Cs₂NaYCl ₆		Fm3m	10,732				4	ΒΤΦ	[82]
Cs₂NaYCl ₆		I4/m						ΗΤΦ	[86, 123]
Cs ₂ RbBiCl ₆		rh	11,11			α=88,2	4		[113, 114]
Cs ₂ RbCrCl ₆		r	14,79	11,00	15,01		8		[113, 114]
Cs ₂ TIBiCl ₆		rh	11,03			α=88,2	4		[113, 114]
Cs ₂ TICrCl ₆		t	10,57		10,78		4		[113, 114]
CsK ₂ BiCl ₆		C2/c	25,653	7,799	12,874	β =99,24	8	комн. темп.	[17]
CsK ₂ BiCl ₆		P P	13,503	7,643	15,278	α=119,15	4		[14]
						β=106,36			
						γ = 90,54			
CsRbLiLuCl ₆		Fm3m	10,338				4		[77]
CsRbLiScCl ₆		R Tm	7,223		35,86		6	тип Cs ₂ NaCrF ₆	[77]
CsRbLiTmCl ₆		Fm3m	10,370				4		[77]
CsRbNaLaCl ₆		P4/nbm	10,917		10,986		4		[77]
CsRbNaNdCl ₆		Fm3m	10,842				4		[77]
CsRbNaPrCl ₆		P4/nbm	10,846		10,908		4		[77]
CsRbNaScCl ₆		Fm3m	10,437				4		[77]
CsRbNaVCl ₆		Fm3m	10,276				4		[77]
In ₂ LiTmCl ₆		P4/nbm	10,198		10,380		4		[77]
K ₂ LiScCl ₆		P4/nbm	9,946		10,027		4		[77]

K ₂ LiTmCl ₆		P4/nbm	10,140		10,218		4		[77]
K₂NaBiCl ₆	псевдокубич.		10,50				4]113, 114]
K ₂ NaCrCl ₆		Fm3m	10,085				4		[36]
K₂NaCrCl ₆		Fm3m	9,98				4		[113, 114]
K₂NaCrCl ₆		P4/mnc	7,080		10,047				[36]
K₂NaUCl ₆		P3m1	7,28		17,79				[53]
Rb₂AgTmCl ₆		P4/nbm	10,472		10,583		4		[77]
Rb ₂ ErCl ₆		Fm3m	10,307				4		[77]
Rb₂KCrCl ₆		P2 ₁ /c	12,884	7,249	12,550	β =108,91	4	комн. темп.	[36]
Rb ₂ Li _{0.5} Na _{0.5} ScCl ₆		Fm3m	10,271				4		[77]
Rb ₂ Li _{0.5} Na _{0.5} TmCl ₆		P4/nbm	10,415		10,474		4		[77]
Rb ₂ LiDyCl ₆		Fm3m	10,354				4		[77]
Rb ₂ LiEuCl ₆		P4/nbm	10,404		10,482		4		[77]
Rb ₂ LiGdCl ₆		P4/nbm	10,388		10,438		4		[77]
Rb ₂ LiHoCl ₆		Fm3m	10,339				4		[77]
Rb₂LiInCl ₆		Fm3m							[77]
Rb₂LiLuCl ₆		Fm3m	10,269				4		[77]
Rb ₂ LiRhCl ₆		<i>P</i> T <i>m</i> 1	6,944		6,012		1	тип Cs ₂ LiGaF ₆	[77]
Rb₂LiRuCl ₆		<i>P</i> T <i>m</i> 1	6,960		6,012		1	тип Cs ₂ LiGaF ₆	[77]
Rb ₂ LiSc _{0.2} Lu _{0.8} Cl ₆		Fm3m	10,240				4		[77]
Rb ₂ LiSc _{0.5} Lu _{0.5} Cl ₆		Fm3m	10,207				4		[77]
$Rb_2LiSc_{0.5}V_{0.5}Cl_6$		R Tm	7,097		35,38		6		[77]
Rb ₂ LiSc _{0.6} Lu _{0.4} Cl ₆		Fm3m	10,167				4		[77]
Rb ₂ LiSc _{0.8} Lu _{0.2} Cl ₆		Fm3m	10,137				4		[77]
Rb ₂ LiScCl ₆		Fm3m	10,107				4		[77]
Rb ₂ LiSmCl ₆		P4/nbm	10,427		10,500		4		[77]
Rb ₂ LiTbCl ₆		Fm3m	10,378				4		[77]
Rb ₂ LiTmCl ₆		Fm3m	10,296				4		[77]
Rb ₂ LiVCl ₆		<i>P</i> T <i>m</i> 1	6,982		6,029		1	тип Cs ₂ LiGaF ₆	[77]
Rb ₂ LiYCl ₆		Fm3m	10,344				4		[77]
Rb₂NaBiCl ₆	псевдокубич.		10,64				4		[113, 114]
Rb ₂ NaCrCl ₆		Fm3m	10,10				4		[113, 114]
Rb ₂ NaCrCl ₆		Fm3m	10,131				4		[36]
Rb ₂ NaDyCl ₆		P4/nbm	10,576		10,652		4		[77]

Rb ₂ NaErCl ₆		P4/nbm	10,539	10,605	4		[77]
Rb ₂ NaEuCl ₆		P4/nbm	10,641	10,699	4		[77]
Rb ₂ NaGdCl ₆		P4/nbm	10,613	10,676	4		[77]
Rb ₂ NaHoCl ₆		P4/nbm	10,562	10,625	4		[77]
Rb ₂ NaInCl ₆		Fm3m	10,404		4		[77]
Rb ₂ NaLuCl ₆		P4/nbm	10,494	10,570	4		[77]
Rb ₂ NaSc _{0.2} Lu _{0.8} Cl ₆		P4/nbm	10,474	10,536	4		[77]
Rb ₂ NaSc _{0.4} Lu _{0.6} Cl ₆		P4/nbm	10,445	10,499	4		[77]
Rb ₂ NaSc _{0.8} Lu _{0.2} Cl ₆		Fm3m	10,396		4		[77]
Rb ₂ NaScCl ₆		Fm3m	10,364		4		[77]
Rb ₂ NaTiCl ₆		С	10,394		4		[82]
Rb ₂ NaTmCl ₆	>441 K	Fm3m	10,630		4	ВТΦ, 475 К	[77]
Rb ₂ NaTmCl ₆		P4/nbm	10,530	10,599	4	НΤΦ, 293 К	[77]
Rb ₂ NaTmCl ₆		P4/nbm	10,57	10,63	4		[53]
Rb ₂ NaUCl ₆			7,27	35,51			[53]
Rb ₂ NaVCl ₆		Fm3m	10,195		4		[77]
Rb₂NaYbCl ₆		P4/nbm	10,509	10,576	4		[77]
Rb ₂ NaYCl ₆		P4/nbm	10,566	10,633	4		[77]
RbKLiScCl ₆		Fm3m	10,055		4		[77]
RbTILiDyCl ₆		P4/nbm	10,298	10,404	4		[77]
RbTILiScCl ₆		Fm3m	10,067		4		[77]
RbTILiTmCl ₆		Fm3m	10,271		4		[77]
Tl₂LiLuCl ₆		P4/nbm	10,145	10,251	4		[77]
Tl ₂ LiSc _{0.25} Lu _{0.75} Cl ₆		P4/nbm	10,139	10,220	4		[77]
Tl ₂ LiSc _{0.5} Lu _{0.5} Cl ₆		Fm3m	10,111		4		[77]
Tl ₂ LiScCl ₆		Fm3m	10,029		4		[77]
Tl ₂ LiTmCl ₆		P4/nbm	10,194	10,312	4		[77]
Tl₂LiYbCl ₆		Fm3m	10,283		4		[77]
Tl ₂ LiYbCl ₆		P4/nbm	10,153	10,273	4		[77]
Tl₂NaBiCl ₆	псевдокубич.		10,60		4		[113, 114]
Tl₂NaCrCl ₆		Fm3m	10,02		4		[113, 114]
Tl₂NaScCl ₆		P4/nbm	10,241	10,310	4		[77]
Tl₂NaTmCl ₆		P4/nbm	10,437	10,515	4		[77]

Бромиды									
Cs ₂ KScBr ₆		С	11,347				4		[83, 120]
Cs ₂ KTmBr ₆		С	11,498				4		[83, 120]
Cs ₂ NaCeBr ₆		С	11,508				4		[75]
Cs ₂ NaDyBr ₆	>139 K	Fm3m	11,314				4		[26]
Cs ₂ NaDyBr ₆	<139 K	I4/m							[26]
Cs ₂ NaGdBr ₆		С	11,370				4		[75]
Cs ₂ NaHoBr ₆	>126 K	Fm3m	11,293				4		[26]
Cs ₂ NaHoBr ₆	<126 K	I4/m							[26]
Cs ₂ NaNdBr ₆		С	11,421				4		[75]
Cs ₂ NaScBr ₆		С	11,070				4		[83, 120]
Cs ₂ NaSmBr ₆		С	11,401				4		[83, 120]
Cs ₂ NaTmBr ₆	>101 K	Fm3m	11,253				4		[26, 83]
Cs ₂ NaTmBr ₆	(<101j102,4) K	I4/m							[26]
Cs ₂ NaYBr ₆	c > 140 K		11,304				4		[75]
Иодиды									
Cs ₂ NaErl ₆	> 383 K		12,20				4		[53]
Cs ₂ NaErl ₆	< 383 K	h	12,08		12,23		4		[53]
Cs ₂ LiScl ₆		h	8,191		7,003		1	Тип Cs ₂ LiAlF ₆	[53]
$Cs_2Au^{+}Au^{3+}I_6$	<i>р</i> > 6,8 Гпа, 350 К	Pm3m	5,370						[61]
Cs₂Au⁺Au³⁺I ₆		I4/mmm	8,28		12,08		2		[53]
K₃Gdl ₆		P2 ₁ /n	8,252	8,820	12,19	β =90,89	2		[53]

6. Литература

- 1. Aleksandrov K.S., Bartolome J. // Phys. Condens. Matter. 1994. V. 6. P. 8219–8235.
- 2. Aleksandrov K.S., Melnikova S.V., Misyul S.V. // Phys. Status Solidi. 1987. V. A104, № 2. P. 545–548.
- 3. Aleonard S., Pouret C. // J. Appl. Aryst. 1968. V. 1, № 2. P. 113–116.
- 4. Alter E., Hoppe R. // Z. anorg. allg. Chem. 1974. Bd. 405. S. 167.
- 5. Alter E., Hoppe R. // Z. anorg. allg. Chem. 1975. Bd. 412, № 2. S. 110–120.
- 6. Alter E., Hoppe R. // Z. anorg. allg. Chem., 1974, Bd. 403, № 2, S. 127–136.
- 7. Alter E., Hoppe R. // Z. anorg. allg. Chem., 1974, Bd. 407, S. 305–312.
- 8. Alter E., Hoppe R. // Z. anorg. allg. Chem., 1974, Bd. 407, S. 313–318.
- 9. Amorasit M., Jenssen B., Holm J.L. // Acta Chem. Scand. 1973. V. 27, № 5. P. 1831–1832.
- 10. Arndt J., Babel D., Haegele R., Rombach N. // Z. anorg. allg. Chem. 1975. Bd. 418, № 3. S. 193–207.
- 11. **Babel D.** // J. Solid State Chem. 1976. V. 18, № 1. P. 39.
- 12. Babel D., Haegele R., Pausewang G., Wall F. // Mat. Res. Bull. 1973. V. 8. P. 1371–1382.
- 13. **Babel D., Fajans K., Jorgensen C.K** Strictire and bonding. Vol.3, Berlin-Heidelberg-New-York, Springer-Verlag. 1967.
- 14. Barbier P., Drache M., Meiresse // J. Solid State Chem. 1982. V. 42. P. 130–135.
- 15. Beck L.K. // J. Solid State Chem. 1973. V. 8, № 4. P. 312–317.
- 16. Becker S., Hoppe R. // Z. anorg. allg. Chem., 1989, Bd. 579, № 12, S.16-26.
- 17. Benachenhou F., Mairesse G., Nowogrocki G., Thomas D. // J. Solid State Chem. 1986. V. 65. P. 13–26.
- 18. Besse J.P. // C. r. Acad. sci. 1968. V. C266. P. 551.
- 19. Beznosikov B.V., Flerov I.N., Gorev M.V., Melnikova S.V., Misjul S.V., Voronov V.N. // Ferroelectrics

Letters. 1983. V. 1, № 2. P. 35–41.

- 20. Bill J., Lerch K., Laqua W. // Z. anorg. allg. Chem., 1990, Bd. 589, № 10, S. 7-11.
- 21. Bode H., Voss E. // Z. anorg. allg. Chem. 1957. Bd. 290. S. 1–16.
- 22. Brosset C. // Z. anorg. allg. Chem. 1938. Bd. 239. S. 304–304.
- 23. Brown I.D., Gillespie R.J., Morgan K.R., Tun Zin., Ummat P.K. // Inorg. Chem. 1984. V. 23, № 26. P. 4506–4508.
- 24. Bucher E., Guggenheim H.J., Andres K., Hull G.W., Cooper A.S. // Phys. Rev. B. 1974. V. 10, № 7. P. 2945.
- 25. Burns J.H., Tennissen A.C., Brunton G.D. // Acta Cryst. 1968. V. B24, № 2. P. 225–230.
- 26. **Вьhrer W., Gьdel H.U.** // J. Phys. C: Solid State Phys. 1987. V. 20. P. 3809–3821.
- 27. Chassaing J. // C. r. Acad. sci. 1971. V. C272, № 2. P. 209.
- 28. Chassaing J. // Rev. chem. miner. 1968. V. 5, № 6. P. 1115–1154.
- 29. Chretien A., Chassaing J. // C. r. Acad. sci. 1966. V. C263, № 21. P. 1301–1303.
- 30. Dunlap B.D., Shenoy G.K. // Phys. Rev. B. 1975. V. 12, № 7. P. 2716.
- 31. Faget H., Grannec J., Tressaud A., Rodriguez V., Roisnel T., Flerov I.N. Gorev M.V. // Eur. J. Solid State Inorg. Chem. 1996. V. 33. P. 893.
- 32. Feldner F., Hoppe R. // Z. anorg. allg. Chem. 1980. Bd. 471. S. 131–139.
- 33. Figgis B.N., Reynolds P.A., Williams G.A. // J. Chem. Soc. Dalton Trans. 1980. № 12. P. 2348–2353.
- 34. Fish G.E., Narth M.H., Stapleton H.J. // J. Chem. Phys. 1980. V. 73, № 10. P. 4807–4815.
- 35. Flerov I.N., Gorev M.V., Aleksandrov K.S., Tressaud A., Grannec J., Couzi M. // Materials Science and Engineering. 1998. V. R24, № 3. P. 81–151.

- 36. Friedrich G., Fink H., Seifert H.J. // Z. anorg. allg. Chem., 1987, Bd. 548, S. 141–150.
- 37. Garton G., Wanklyn B.M. // J. Crysttal Growth. 1967. V. 1. P. 49–51.
- 38. Grannec J., Fournes L., Lagassie P. et al. // Mater. Res. Bull. 1990. V. 25, № 6. P. 815–820.
- 39. Grannes J., Champarnaud-Mesjard J.C., Cosly J.P., Cousseins J.C., Gaudreau B. // Rev. chem. miner. 1972. V. 9, № 4. P. 569–580.
- 40. Grannes J., Sorbe P., Portier J., Hagenmuller P. // C. r. Acad. sci. 1975. V. C280, № 2. P. 45–47.
- 41. Graulich I., Drьcke S., Babel D. // Z. anorg. allg. Chem. 1998. Bd. 624, № 9. S. 1460–1464.
- 42. Grjotheim K., Holm J.L., Malinovsky M., Mikhaiel S.A. // Acta Chem. Scand. 1971. V. 25, № 5. P. 1695– 1702.
- 43. Guedira T., Wignacourt J.P., Drache M., Lorriaux-Rubbens A., Wallart F. // Phase Transitions. 1988. V. 13. P. 81–85.
- 44. Guengard H., Grannec J., Tressaud A. et al. // C. R. Acad. sci. Ser. 2. 1993. V. 317, № 1. P. 37–42.
- 45. Haley L.V., Koningstein J.A. // J. Raman Spectrosc. 1976. V. 5, № 3. P. 305–310.
- 46. Herdtweck E., Massa W., Babel D. // Z. anorg. allg. Chem. 1986. Bd. 539, № 8. S. 87–94.
- 47. Holm J.L., Holm J.B. // Acta chem. Scand. 1970. V. 24, № 7. P. 2535.
- 48. Hoppe R., Becker St. // Z. anorg. allg. Chem., 1989, Bd. 568, S. 126–135.
- 49. Hoppe R., Lehr K. // Z. anorg. allg. Chem. 1975. Bd. 416, № 3. S. 240–250.
- 50. Hoppe R., Schneider S. // Z. anorg. allg. Chem. 1968. Bd. 361. S. 113.
- 51. Hoppe R., Wingefeld G. // Z. anorg. allg. Chem., 1984, Bd. 519, S. 189–194.
- 52. Hoppe R., Wingefeld G. // Z. anorg. allg. Chem., 1984, Bd. 519, S. 195–203.
- 53. **ICDD** (International Centre for Diffraction Data) **PDF–2**, 1997. Database.
- 54. **Ihringer J.** // Solid State Commun. 1982. V. 41, № 7. P. 525–527.

- 55. Ihringer J. et al. // Z. Kristallogr. 1981. Bd. 156, № 1-2. S. 58.
- 56. Ihringer J., Wu G., Hoppe R. et al. // J. Phys. Chem. Solids. 1984. V. 45. P. 1195–1200
- 57. **Jouini N.** // J. Solid State Chem. 1986. V. 63, № 3. P. 431–438.
- 58. Khairoun S., Tressaud A., Grannec J., Dance J.M., Yacoubi A. // Phase Transitions. 1988. V. 13. P. 157– 163.
- 59. Kissel D., Hoppe R. //Z. anorg. allg. Chem. 1986. Bd. 532. S. 17–22.
- 60. Kojic–Prodic B., Scavnicar S., Liminga R., Aljukic M // Acta Cryst. 1972. V. B28, № 7. P. 2028–2032.
- 61. Kojima N., Katagawa H., Sato H. et al. // KEK Progr. Rept. 1990. № 3. P. 352.
- 62. Kozak A. // C. r. Acad. sci. 1969. V. C268, № 5. P. 416–418.
- 63. Kozak A. // Rev. chim. miner. 1971. V. 8, № 2. P. 301.
- 64. Kozak A., Almai M., Samouel M. // Rev. chim. miner. 1979. V. 16. P. 441–448.
- 65. Kozak A., Samouel M. // Rev. chim. miner. 1977. V. 14. P. 93–102.
- 66. Kozak A., Smouel M. et al. // Rev. chem. min. 1976. V. 10. P. 259–271.
- 67. Kutscher J., Schneider A. // Z. anorg. allg. Chem. 1971. Bd. 386, № 1. S. 38–46.
- 68 **Landolt-Burnstein** Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie, Band 4, Teil a. Berlin-Heidelberg-New York, Springer-Verlag, 1970, 367 S.
- 69. Lazarini F. // Acta Cryst. 1978. V. B34, № 7. P. 2288–2290.
- 70. Malakhovskii A.V., Vasilev G.G. // Phys. Status Solidi)b). 1983. V. 118. P. 337–344.
- 71. Massa W. // Z. anorg. allg. Chem. 1982. Bd. 491, № 8. S. 208–216.
- 72 Massa W. // Z. anorg. allg. Chem., 1975, Bd. 415, S. 254–262.
- 73. Massa W., Babel D. // Z. anorg. allg. Chem., 1980, Bd. 469, S. 75–80.

- 74. Massa W., Babel D., Epple M., Rьdorff W. // Rev. chim. miner. 1986. V. 23, № 4-5. P. 508–519.
- 75. Mermant G., Primot J. // Mat. Res. Bull., 1979. V. 14., № 1. P. 45–50.
- 76. Meyer G. Ax P., Schleid T., Irmler M. // Z. anorg. allg. Chem. 1987. Bd. 554, № 11. S. 26–33.
- 77. Meyer G., Dietzel E. // Rev. chim. miner. 1979. V. 16. P. 189–202.
- 78. Meyer G., Duesmann W. // Z. anorg. allg. Chem., 1982, Bd. 485, S.133-140.
- 79. Meyer G., Hwu Shiou-Jyh., Corbet J.D. // Z. anorg. allg. Chem. 1986. Bd. 535, № 4. S. 208–212.
- 80. Meyer G., Linzmeier P. // Z. Naturforschung. 1977. Bd. 32b, № 5. S. 544.
- 81. Morss L.R., Robinson W.R. // Acta Cryst. 1972. V. B28. P. 653–654.
- 82. Morss L.R., Siegal M., Stenger L., Edelstein N. // Inorg. Chem. 1970. V. 9, № 7. P. 1771.
- 83. **Pistorius C.W.F.T.** // J. Solid State Chem. 1975. V. 13, № 3. P. 208–214.
- 84. Schneider S., Hoppe R. // Z. anorg. allg. Chem. 1970. Bd. 376, № 3. S. 268–276.
- 85. Schneider S., Hoppe R. // Z. anorg. allg. Chem. 1970. Bd. 376, № 3. S. 277–281.
- 86. Schwartz R.W., Watkins S.F., O'Connor C.J., Carlin R.L. // J. Chem. Soc. Faraday Trans. 1976. Part 2. V. 72, № 3. P. 565–570.
- 87. Seifert H.J., Sandrock J. // Z. anorg. allg. Chem., 1990, Bd. 587, № 8, S.110-118.
- 88. Setter J., Hoppe R. // Z. anorg. allg. Chem. 1976. Bd. 423, № 2. S. 125–143.
- 89. Setter J., Hoppe R. // Z. anorg. allg. Chem. 1976. Bd. 423. S. 133–143.
- 90. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751–767.
- 91. Siddiqi I., Hoppe R. // Z. anorg. allg. Chem. 1975. Bd. 414, № 1. S. 91–96.
- 92. Siebert G., Hoppe R. // Z. anorg. allg. Chem., 1972, Bd. 391, S. 117–125.
- 93. Spirlet M.R., Rebizant J., Fuger J., Schoebrechts J.P. // Acta Cryst. 1988. V. C44, № 7. P. 1300–1301.

- 94. Strunz H. Mineralogische Tabellen. Leipzig. Akademische verlags-geseilschaft. 1996. V. 4. 560 s.
- 95. Swanson H.E., McMerrdie H.F. Morris M.C., Evans E.H., Paetzkin B. // U.S. National Bureau of Standards Monogr. 1971. V. 25, № 9. P. 43.
- 96. Tomaszewski P.E. // Phase Transitions, 1992, V. 38, P. 127-220.
- 97. Tressaud A., Darriet J., Lagassie P., Grannec J., Hagenmuller P. // Mat. Res. Bull. 1984. V. 19. P. 983– 988.
- 98. Tressaud A., Khairoun S., Dance J.M., Hagenmuller P. // Z. anorg. allg. Chem. 1984. Bd. 517. S. 43–58.
- 99. Tressaud A., Khairoun S., Rabardel L. et al. // Phys. Status Solidi (a). 1986. V. 96. P. 407–414,
- 100. Tressaud A., Khдiroun S., Chaminade J.P., Couzi M. // Phys. Status Solidi. 1986. V. A98, № 2. P. 417– 421.
- 101. Urland W., Feldner K., Hoppe R. // Z. anorg. allg. Chem. 1980. Bd. 465. S. 7–14.
- 102. Verdine A., Besse J.P., Baud G., Copes tan M. // Rev. chim. miner. 1970. V. 7. P.593.
- 103. Villafuerte-Castrejon M.E., Estrada M.R., Comez-Lara J., Duque J., Pomes R. // J. Solid State Chem. 1997. V. 132, № 1. P. 1–5.
- 104. Wilhelm V., Hoppe R. // Z. anorg. allg. Chem. 1975. Bd. 416, № 3. S. 240–250.
- 105. Winkler H.G.F. // Acta Cryst. 1954. V. 7. P. 33–44.
- 105А Xu Y., Carlson S., Sjцdin A., Narrestam R. // J. Solid State Chem. 2000. V. 150, № 2. P. 399–403.
- 106. Александров К.С., Анистратов А.Т., Безносиков Б.В., Федосеева Н.В. Фазовые переходы в кристаллах галоидных соединений АВХ₃. Новосибирск, Наука, 1981.- 264 с.
- 107. Александров К.С., Воронов В.Н., Горев М.В. Мельникова С.В., Мисюль С.В., Прокерт Ф., Флёров И.Н. Фазовые переходы в галоидных кристаллах со структурой эльпасолита. Красноярск, ИФ СО АН СССР, 1985. (Препринт № 345 Ф, часть 1. 40с. Препринт № 346 Ф, часть 2. 40 с.).

- 108. Александров К.С., Воронов В.Н., Мисюль С.В., Флёров И.Н. / В сб. "Проблемы кристаллографии". М.: Наука. 1987. С. 247–267.
- 109. Анистратов А.Т., Безносиков Б.В., Гусар В.А. // ФТТ. 1978. Т. 20, № 12. С. 3699.
- 110. Безносиков Б.В. // Кристаллография, 1993, Т. 38, № 2, С.189–194.
- 111. **Безносиков Б.В.** Расчет параметров элементарных ячеек в структурах ионных кристаллов. Красноярск. 1990. (Препринт № 632 Ф, ИФ СО АН СССР. 32 с.).
- 112. Безносиков Б.В. Синтез кристаллов и исследование фазовых переходов в галоидных соедингениях ABX₃ со структурой типа перовскита: Диссертация канд. физ.-мат. наук, Красноярск, ИФ СО АН СССР, 1977.-150с.
- 113. Безносиков Б.В., Мисюль С.В. // Кристаллография. 1978. Т. 23, № 3. С. 622.
- 114. Безносиков Б.В., Мисюль С.В. // Новые соединения с эльпасолитными структурами. Деп. в ВИНИТИ. № 378-77 от 1 февраля 1977 г. (9 стр).
- 115. Воронов В.Н. Синтез и исследование кристаллов типа перовскита и кристаллобалита. Дисс. канд. ф.мат. наук. Красноярск. ИФ СО АН СССР. 1989.
- 116.. Воронов В.Н., Горев М.В., Мельникова С.В. и др. // ФТТ, 1992, Т. 34, С. 316-318.
- 117. Головастиков Н.И., Белов Н.В. // Кристаллография. 1978. Т.23, № 1. С. 42–46.
- 118. Горев М.В. // ФТТ. 1983. Т. 25, № 2. С. 566–568.
- 119. **Минералы**. Справочник. Т.II, вып.1, галогениды М.: Издат. АН СССР, 1963. 296 с.
- 120. Палюра И.П., Палкин А.П. // Журнал неорган. химии. 1964. Т. 9, № 11. С. 2668–2669.
- 121. Решетникова Л.П., Шаймурадов И.Б., Ефремов В.П., Новоселова А.В. // ДАН СССР. 1973. Т. 213. № 1. С. 98–100.
- 122. Решетникова Л.П., Шаймурадов И.Б., Ефремов В.П., Новоселова А.В. // ДАН СССР. 1974. Т. 215. № 4. С. 877.

- 123. Усачев А.Е., Шустов В.А., Яблоков Ю.В. // Изв. АН СССР, сер. физ. 1989. Т. 53, № 7. С. 1296–1299.
- 124. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972.- 248 с.
- 125. Флёров И.Н., Горев М.В., Мельникова С.В. и др. // ФТТ, 1992, Т.34, С. 2185-2195.
- 126. Шаймурадов И.Б., Решетникова Л.П., Ковба Л.И., Ефремов В.Н. // Журн. неорган. химии. 1973. Т. 18, № 8. С. 2077.
- 127. Шаймурадов И.Б., Решетникова Л.П., Новоселова А.В. // Журн. неорган. химии. 1974. Т. 19, № 11. С. 3003.
- 128. Якубович О.В., Симонов М.А., Мельников О.К., Урусов В.С. // Докл. АН СССР. 1986. Т. 287, № 1-2. С. 97–104.

Ответственный за выпуск Б.В. Безносиков Подписано в печать 12.05.2000. Гарнитура "Arial" Уч. изд. л. 3.25. Заказ №25. Тираж 60 экз. Отпечатано в типографии Института физики им. Л.В. Киренского СО РАН