Институт Физики им.Л.В.Киренского
Победитель конкурса сайтов СО РАН - 2010
Яndex

www.yandex.ru
  Главная
  Офис
  Новости
  Службы
  Семинары
  Достижения
  Научные отчеты
  Лаборатории
  Направления
  Интеграция
  Разработки
  Ученый совет
  Советы по защитам
  Аспирантура
  Конференции
  Конкурсы, Гранты
  Публикации
  Препринты
  Издательство
  Библиотека
  Совет молодых учёных
  Студентам
  Виртлаб
  История
  Фоторепортажи
  Персоналии
  О  Киренском
  Ученики и соратники
  Мемориальный музей
  Бухг-рия, план. отдел
  Download
  Карта  сервера

Ïðèíöèïû êâàíòîâîé ìåõàíèêè

СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТИ ГЕЙЗЕНБЕРГА. Логическим развитием идеи о корпускулярных свойствах света ("волны могут вести себя подобно частицам") явилось признание волновых свойств у частиц (электрон, нейтрон, протон). Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов.

Рассуждения, аналогичные ранее проделанным для интерферирующих фотонов, требуют признания невозможности постановки эксперимента по выяснению через какое из двух отверстий пролетел электрон при условии сохранения интерференционной картины. В отличие от фотона, электрон (или другая элементарная частица) в принципе могут быть зарегистрированы без их обязательного поглощения. Однако, любое взаимодействие обладающих малыми частиц с другими телами (даже со светом) неизбежно приводит к существенным изменениям состояний самих наблюдаемых частиц, что ведет к разрушению интерференционной картины. Многочисленные мысленные эксперименты, подобные рассмотренному приводят к выводу о невозможности одновременного измерения координаты и импульса частиц со сколь угодно высокой наперед заданной точностью. Выражающее принципиальные ограничения на точность измерений неравенство, связывающее минимально возможные погрешности было предложено Гейзенбергом и носит название соотношения неопределенности.

Соотношение неопределенности Гейзенберга явилось предметом пристального внимания философии, поскольку провозглашаемый принципиальный запрет перекликался с идеями сторонников агностических учений, отрицающих возможность познания окружающего нас мира. Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта. Таким образом соотношение неопределенности является "подсказкой" природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира.

ОСОБЕННОСТИ КВАНТОВО-МЕХАНИЧЕСКОГО ОПИСАНИЯ. "Правила игры" квантовомеханического описания нерелятивистских макро- и микроскопических объектов не могут быть выведены, исходя из "привычных" классических законов, поскольку являются более общими и включают в себя эти классические законы, как частный случай, получаемый в виде чисто математических следствий из постулируемых принципов квантовой механики (принцип соответствия должен выполняться).

Критерием истинности формулируемых принципов, как обычно, является эксперимент и, может быть, красота и изящность теории ("эта теория достаточно безумна, что бы быть верной"). Следует ожидать, что после завершения разработки еще более общей теории (релятивистской квантовой механики), принципы нерелятивистской теории превратятся в прямые следствия новых, более фундаментальных принципов.

Наиболее принципиальными отличиями квантовомеханического описания явлений от принятого в классическом естествознании подхода являются:

  1. Отказ от детерминированности и признание принципиальной роли случайности в процессах с участием микрообъектов. В классическом описании понятие случайности используется для описания поведения элементов статистических ансамблей и является лишь сознательной жертвой полнотой описания во имя упрощения решения задачи. В микромире же точный прогноз поведения объектов, дающий значения его традиционных для классического описания параметров, по-видимому, вообще невозможен. По этому поводу до сих пор ведутся оживленные дискуссии: приверженцы классического детерминизма, не отрицая возможности использования уравнений квантовой механики для практических расчетов, видят в учитываемой ими случайности результат нашего неполного понимания законов ("внутренних механизмов"), управляющих пока непредсказуемым для нас поведением микро объектов. Приверженцем такого подхода, допускающего наличие у квантовых объектов "внутренних степеней свободы", был Эйнштейн, сформулировавших свою позицию в знаменитом высказывании: "Я не могу предположить, что бы господь Бог играл в кости". До настоящего времени не обнаружено никаких экспериментальных фактов, указывающих на существование внутренних механизмов, управляющих "случайным" поведением микрообъектов.
  2. Принципиально отличающийся от классического закон сложения вероятностей взаимоисключающих друг друга с классической точки зрения событий. В классической концепции вероятности всегда складываются, что и приводит к не оправдывающемуся на опыте ожиданию обнаружить при открывании двух щелей картины, равную сумме изображений, получаемых от каждой из щелей в отдельности.
  3. В квантовой механике отвергается постулируемая в классическом естествознании принципиальная возможность выполнения измерений и даже наблюдений объектов и происходящих с ними процессов, не влияющих на эволюцию изучаемой системы. Это приводит к существованию пар канонически сопряженных классических параметров, одновременное сколь угодно точное измерение которых оказывается невозможным (координата - импульс, время - энергия, и др.).

Выходящий из имеющей две открытые двери комнаты человек, в принципе, "будет интерферировать" подобно электрону в опыте Юнга, из-за чего возникнут области в пространстве, где он не сможет появиться. однако из-за большой массы человека размеры этих областей будут столь малы, что для реальных задач макроскопического описания указанное явление заведомо несущественно и даже не наблюдаемо. При рассмотрении же движения электрона (масса всего кг) в атоме (характерные размеры около м) соотношение неопределенности предсказывает наличие заведомо ненулевого импульса. Соответствующая ему кинетическая энергия оказывается близкой по порядку величины к потенциальной энергии электростатического притяжения электрона к ядру. При этом соотношение неопределенности "не дает" электрону существенно приблизиться к ядру, поскольку при этом скорость его движения неизбежно должна увеличиться. Т.о электрон в атоме является принципиально квантовомеханическим объектом. При квантовомеханическом рассмотрении атома даже в рамках полу классической модели Резерфорда проблема ультрафиолетовой катастрофы снимается.

"СТАРАЯ" И "НОВАЯ" КВАНТОВЫЕ МЕХАНИКИ. Основная заслуга в строгой формулировке принципов квантовой механики принадлежит Бору. В первоначальном варианте им использовалась планетарная модель атома Резерфорда, в рамках которой движущемуся по круговой орбите электрону сопоставлялись волна, квадрат модуля которой определял вероятность обнаружения электрона в данной точке ("волна ДеБройля"). Бор постулировал существование стационарных орбит, при движении по которым электрон не излучает электромагнитные волны (оказалось, что на таких орбитах укладывается целое число длин волн ДеБройля). При переходе электрона с одной орбиты на другую изменение его энергии сопровождается излучением или поглощением фотона. Такая модель прекрасно объясняла частотные закономерности в спектре излучения атомов водорода, но еще сохраняла черты отвергаемой классической теории. Теория не могла объяснить некоторых деталей, обнаруженных при более точных исследованиях спектра водорода. Более того, с помощью постулатов Бора не удавалось объяснить наблюдаемые весьма сложные спектры многоэлектронных атомов и их молекулярных соединений. Наконец, "старая" квантовая механика не объясняла множества других явлений, происходящих с атомами и молекулами, которые были уже хорошо известны в химии.

Спустя более, чем десятилетие, после создания первой квантовомеханической модели атома водорода Н.Бором была построена новая законченная и непротиворечивая квантовомеханическая теория, в целом с успехом используемая до настоящего времени. Как это уже не раз случалось в физике, ее создание потребовало развития нового математического аппарата, адекватно описывающего сформулированные в ее рамках новые физические идеи.

ПРИРОДА ЭЛЕКТРОСТАТИЧЕСКИХ И ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЙ. В общих чертах сходный механизм лежит в основе современных представлений о возникновении электростатических взаимодействий между электрическими зарядами. Вместо "туннелирующего" электрона в молекулярном ионе роль переносчика электрических взаимодействий между зарядами играют виртуальные фотоны, обнаружения которых в реальном эксперименте оказывается принципиально невозможным.

Сходный механизм был предложен и в случае сильных ядерных взаимодействий. Быстрый спад ядерных сил при увеличении расстояний привел к допущению, что переносчиком взаимодействия является на обладающий нулевой массой покоя фотон, а весьма тяжелая частица с массой, превосходящей электронную примерно в 200 раз. Вскоре такие частицы были обнаружены в космических лучах (пи-мезоны), но дальнейшие эксперименты показали их непричастность к ядерным силам. Однако выдвинутая гипотеза все же оказалась жизнеспособной: впоследствии были обнаружены похожие на ранее открытые мезоны частицы, свойства которых согласовывались с предсказанными на основе анализа ядерных сил.

ОБЪЕДИНЕНИЕ ИДЕЙ КВАНТОВОЙ МЕХАНИКИ И РЕЛЯТИВИЗМА

По своему построению квантовая механика является существенно нерелятивистской теорией: используемое в уравнении Шредингера выражение для оператора Гамильтона является обобщением классической формулы для энергии. Для множества реальных приложений теории (физика кристаллов, химия, биология) требование малости скоростей не является существенным ограничением: диапазон энергий, с которыми приходится иметь дело в земных условиях недостаточен для разгона объектов до релятивистских скоростей. Однако существует целый ряд разделов естествознания, развитие которых сделало актуальным вопрос о разработке релятивистской квантовой теории. К ним прежде всего следует отнести разделы физики, занимающиеся взаимодействием света с веществом: зародившаяся в результате попыток понять физическую природу света квантовая механика оказалась неспособной адекватно описать ультрарелятивистскую частицу - фотон. Релятивистская теория микромира необходима физике ядра и элементарных частиц, поскольку изучаемые в ее рамках процессы с участием сильных взаимодействий сопровождаются обменом большими порциями энергии, что неизбежно связано с возникновением высоких скоростей. Космологические теории эволюции Вселенной и Большого Взрыва требуют развития аппарата описания вещества в экстремальных (с нашей точки зрения) состояниях. Наконец, наличие плохо связанных друг с другом релятивистской и квантовой теорий, каждая из которых по-своему "объясняла" классическую концепцию, являющуюся предельным случаем каждой из них, неизбежно ставило вопрос об их объединении. Попытки обобщения квантовой механики и придания ей релятивистски инвариантной формы делались буквально с первых шагов ее создания, но до сих пор еще не привели к созданию законченной и полностью свободной от внутренних противоречий теории.

Дополнительной сложностью, присущей релятивистской теории является не сохранение числа частиц, участвующих в процессе. В частности это означает, что любая рассматриваемая система должная обладать бесконечным числом степеней свободы. Поскольку сама процедура измерения координат частицы в принципе может приводить к рождению новых частиц, она становится принципиально бессмысленной. Релятивистская квантовая теория отказывается не только от описания пространственного положения микрообъектов, но и от описания процессов с их участием в виде происходящих последовательно промежуточных событий. Расчеты поддаются лишь амплитуды вероятностей переходов системы из исходного состояния при , в котором все входящие в нее частицы находятся так далеко друг от друга, что взаимодействие между ними пренебрежимо мало в одно из допустимых законами сохранения конечное состояние при , в котором продукты реакции вновь являются практически свободными объектами.

Уравнение Клейна-Гордона было первой удачной попыткой обобщения уравнения Шредингера на случай релятивистского описания электромагнитных взаимодействий микрообъектов. И в настоящее время считается правильным релятивистским обобщением уравнений квантовой механики, не учитывающих наличие спина у микрообъектов. Оно адекватно описывает поведение частиц с нулевым спином.

 




© И н с т и т у т   Ф и з и к и
им. Л.В.Киренского 1998—2011    Для вопросов и предложений

TopList

[an error occurred while processing this directive]